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PREFACE

-This Report concludes a five-part series on the math-

"ematical theory of non-atomic games. (-S-ee-RM-5468-PR,

-RM-.5842-PR, RM-6216, and RM-6260.) The te:._m "non-atomic,"

borrowed from measure theory and probability theory, sig-

nifies that in these games with infinitely many partici-

pants, no single individual is big enough to influence the

outcome by himself. Such games have served as mathematical

models for large-scale competitive systems in economics or

politics. In this 1eport the applications of the theory

to a class of economics models are developed.

Dr. Aumann, a Rand consultant, is a professor of Math-

ematics at the Hebrew University in Jerusalem and is pres-

ently on leave to the University of California at Berkeley

and Stanford University. Part of the overall support for

this work has come from these institutions, as well as from

certain ONR contracts and from the National Science Founda-

tion through the Mathematics Social Science Board of the

Center for Advanced Study in the Behavioral Sciences.
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The value of a multiperson game is a function that

associates to each player a number that, intuitively speak-

ing, represents an a priori evaluation of what it is worth

to play the game from his position. A non-atomic game is

a special kind of infinite-person game in which no indi-

vidual player has significance. The value concept was

originally defined only for finite-person games; in Parts

I-III of this series several approaches to the problem of

extending the value concept to non-atomic games were de-

veloped. In Part IV the relationship of the value to

another solution concept--the core--was considered.

In the present Part V, the results of the previous

parts are applied to a certain class of basic economic

models, interpretable either as exchange economies with

money or as productive economies. The general conclusion,

which takes a number of specific forms, is that under

fairly wide conditions the value of the game derived from

such a model exists and coincides with the unique payoff

distribution in the core of the game, as well as with the

unique payoff distribution associated with the competitive

equilibrium or equi"ibria of the underlying model. This

exact agreement of several solutions, in an infinite-person

setting, may be compared with known results on the converg-

ence of these solutions in the limit, in similar models

with large but finite numbers of participants.

!BI
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28. INTRODUCTION TO PART V

This is the fifth in a series of papers with the

overall title "Values of Non-Atomic Games".* Familiarity

with the previous parts will be assumed throughout. Num-

,eration of the sections will be continued here, to enable

,easy reference to the previous parts. Other conventions

established previously will also be maintained here.

In this part we will apply the theory developed in

the previous parts to certain economic models. These

models may be interpreted eitic- as monetary exchange

economies**, or as productive economies similar to-but

more general than-the one described in the introduction

to Part IV.*** Our chief result is that under fairly wide

conditions, the game derived from such a model is in pNA,

that there is a unique point in its core, and that this

*For the previous parts, see [I, I, 171, IV] in the
list of references.

**I.e. "markets with money" or "markets with side
payments"; cf. [S--Sl, S-S 2, S8 ]. These are special

cases of the more classical Walrasian exchange economies
(cf., e.g., [N, D-Sca, A1 ]), which ma'y be calleQ "markets

without side payments", and which we hope to study from
the value viewpoint in a subsequent paper.

***See Formula (26.1) and the subsequent discussion.
Incidentally, the word "monetary" in the title of this
part refers only to the first interpretation; the produc-
tion interpretation is not connected with money.
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unique point coincides with the value. We shall also de-

fine the notion of competitive equilibrium for such economies,

and show that this too then yields a unique payoff, which

also coincides with the value, and therefore with the unique

core point.

Section 29 is devoted to a careful conceptual discus-

sion of several aspects of economic models with a continuum

of economic agents. This is needed for a proper understand-

ing of Section 30, in which we introduce and motivate the

particular economic model that is the subject of this paper.

Section 31 contains the statement of the results concerning

the relation between the core and the value. In Section 32

we will introduce and discuss the competitive equilibrium,

and relate it to the previously described concepts. Sec-

tion 33 is devoted to some examples, and Section 34 to a

brief discussion of related literature. Sections 35 through

41 are devoted to the proofs. In the last section, Section

42, we discuss some possibilities for extensions of our

results.

It is to be stressed that the proof of the main result--

i.e., the membership of our game in pNA, the existence of a

unique point in the core and its coincidence with the value--

does not make any use of the notion of competitive equilibrium;

rather, it is based directly on Theorem F in Part IV.

II
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29. CONCEPTUAL PRELIMINARIES

In this section we would like to clarify some of the

ideas used in connection with economic models with a con-

tinuum of economic agents. Specifically, we shall discuss

the use of integration in connection with such models, and

the ideas of payoff vector, allocation, and side-payment

game in such a context. This section does not contain a

discussion of the larger issues involved in the use of

continuous game and economic models; for such a discussion,

see [M-S] and [A,].

Properly to understand the use of integration in con-

nection with continuous economic models, it is convenient

to use an analogy with physics, where continuous models

are plentiful and well-understood. Let us recall the prob-

lem of computing (or for that matter, defining) the gravi-

tational force exerted by a solid beam I on a given mass

point x in space, whose mass is, say, M. One divides I

into "small" pieces, calling a typical piece "As". Then

if P is the distance function and s is a point in As, all

points in As have a distance approximately P(x, s) from x.

Therefore if i(As) denotes the mass of As, the gravita-

tional force exerted by As on x is approximately



p3 (S, X)

(whose magnitude is M(i(As)/P 2 (s, x)); and the total gravi-

tational force exerted by I on x is approximately

(29.1) E[M(s - x)/P (s, x)]as),

the sum being taken over all the "smatl" .pi.ces into which

we have divided I. When we say that as is "small", what

we mean-is that its diameter is small; precisely, what is

required is that (s - x)/P3(s, .x) be almost tonstant as s

ranges over as.

The next step is to pass to the limit. As the dia-

meters of the &S tend to 0, the expression (29.1) tends to

(29.2) f1 [M(s - x)/P 3(s, x)]A(ds),;

at the same time the approximations become better and :better,

and-the, errors involved tend -.to 0. Hence we conclude that

the total force exerted by I on x is in fact precisely the

integral (29.2),.

There is also a slightly different way of looking at

the integral (29.2). One thinks of I as being divided into



"infinitesimal pieces" ds, each with an "infinitesimal

Mass"f i.(ds). The piece ds has an infinitesimal diameter,;

if one wishes one can think of it as consisting of a

single point, located at s. The force exerted by it on

x is

[M(s - x)/P 3(s, x)]gp(ds)?,

and the total force is the "sum"' of these infinitesimal

forces, namely the Integral (29.2).

Some readers may be _disturbed by the use of terms

such as "infinitesimal", which we have not properly de-

~fined.* Such readers may take the discussion in terms, of

infinitesimals to be simplY. an abbreviation for the some-

-what more lengthy disciussion involving "smlp~ieces" and

a L-imiting process. Imptecise as it.-may be., thoukgh,, the

-discussion in terms of infinitesimals hAs a certain direct

conceptual appeal,, which is lackin)g in the limit discussion,

Each inf-initesimal piece ds exerts: a force which -can be

calculated dkac tly--not appr~oximate~ly-by asingle s'traight-

forward appilcewtion of N4ewton' s- formula for 'the, gravitational

*This is not to say that they cannot be 'properly de-
fined; cf. [Roil.

Tii
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attraction between two mass points. And the total force

is simply the sum of these individual forces. By comparison,

the Limit approach seems conceptually devious.

In the case of economic models, the "infinitesimal"

approach has an additional intuitive advantage. People

still think even of very large economies as consisting of

individual agents; intuitively, then, such an agent can

"be associated with an "infinitesimal piece". In the phy-

sical analogy, one could think of our beam I as being made

up of many individual mass points-as indeed it is, if one

considdrs an atom a point. One replaces this set of mass

points by a continuum-both for mathematical convenience

and for a better physical understanding of the gravita-

tional field around a beam. But ,in~ intuitive discussion

of 'the integral, it may still be convenient to associate

an "infinitesimal piece" with one of the individual mass

points. It should be stressed, though, that such an asso-

ciation is not necessary, neither in the economic nor in

the physical situation. In both situations, the infinites-

imal piece can be though of as a set of individuals which

has an infinitesimal mass or measure, and all of whose

members have the same physical or economic properties

(for example the same distance from x in the physical case,

the same utility in the economic case).

Stonia
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In intuitive discussion in the sequel, we shall adopt

the convention of associating an infinitesimal with a single

individual. This is chiefly because it is easier, e.g.,

to write "the trader ds" rather than "the set ds of traders"

or "one of the traders in ds"; if the reader wishes, he can

substitute the. alternative interpretation. The reader

should be careful to note that we are associating an in-

dividual with an infinitesimal subset ds of I, not with

a point* s in I. We will adopt the convention that the

'point named s is always a member of the set named ds.

It will be understood that all functions of s that appear

in the analysis are constant on every ds. For example,

we shall describe the initial bundle of a trader ds by

an expression of the form a(s),L(ds); intuitively, it

is to be ,understood that s is a point in the infinitesimal

set ds, and that a is a function On I that is constant on

"ds, so that it does not ,matter which point s in ds is chosen.

*It may seem we are backtracking a little from the inter-
pretation given in Section 2, where we said simply that "the
members of I are players". Also in [A,], the individual

points in the continuum were called "traders"; and even in
the introduction to Part IV, we referred to a, "producer s".
There is, however, no real change in outlook; here we are
simply being more careful as regards interpretation. In
the sequel it may again become convenient to refer to a
point in I as a "player" or "trader", and then we shall not
hesitate to do so, in spite of the. loss of strict accuracy.

__•._4



Readers who prefer to think of the integral in terms of

the limiting process may make the necessary re-interpreta-

tions, in which ds is replaced by As, s is a point in As,

and As is chosen so that a is "almost constant" on it.

In closing the discussion of this physical analogy,

we would like to stress that the whole discussion is con-

cerned exclusively with the passage from the given phy-

sical situation to the mathematical model. Once one accepts

the integral as properly representing the desired force,

the rest of the treatment can be perfectly precise, in the

best traditions of modern mathematical analysis. The sit-

uation in economics is similar; the mathematical model,

once constructed, can be analyzed with the ordinary mathe-

matical tools, with the precision that is characteristic

of mathematical analysis. Only in constructing the model,

and in relating it to the economic ideas that motivate its

construction, is it convenient to make use of words such

as "infinitesimal", and of the corresponding ideas.

Next, we would like to discuss the idea of "payoff

vector" and related ideas. In a game with a finite set

N of players, a payoff vector is simply a member x of EN,

i.e., a fuhction from N to the reals; intuitively, it is
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to be thought of as an outcome, where the i-th component

x(i) signifies the payoff* to player i.

When we are thinking in terms of coalitions rather

than individuals, it is convenient to think of the payoff

vector x as a measure on N, defined for all S c N by

x(S) - E x(i);
ies

here x(S) signifies the total payoff to S under the out-

come x. This point of view is especially useful in con-

nection with games with a continuum of players, such as

we are studying in this series of papers, say games with

a player space (I, a). In such games a payoff vector may

often be represented by a non-atomic measure; this means

that the individual player gets only an infinitesimal pay-

off, whereas the total payoff to a coalition is often a

*Depending on the context, this payoff could be in
money; in a consumer product, such as the "finished good"
of the production model mentioned in Part IV and further
to be developed in Section 30 below; or in the "transfer-
able utility" which may be familiar to some of our readers
from n-person game theory. Regardless of the direct inter-
pretation of the payoff, however, when we apply the notion
of the value of the game (unlike some other solution concepts)
we are in effect assuming that the payoff is a utility in-
dicator of the "cardinal" kind, in the sense that the re,-
suiting solution will generally be invariant only under
linear order-preserving transformations of the payoffs.
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positive number. For the sake of generality,* we define a

payoff vector to a game with player space (I, a) to be any

member of FA.

Having interpreted the notion of "payoff vector" in

the continuous case, we now come to the notion of "'game"

itself. This was interpreted in Sec. 2 as a real-valued

set function v. The number v(S), for S e 2, was interpreted

as the "total payoff that the coalition S, if it forms, can

obtain for its members", and was called the "worth" of S.

Now there are several assumptions about the nature of

a game that are implicit in the use of a real-valued set-

function to describe it; we would like to discuss just one

of them here, namely the assumption of "unrestricted side

"payments". This means that not only can each coalition S

obtain for its members a total of v(S), but that it can

also distribute this total among its members in any way

it pleases. Thus, if v is any member of FA with v(S) - v(S),

then S can act so that each T c S will obtain v(T), or in

*We have not found it necessary to allow more generality,
e.g. to allow unbounded measures. Neither is it conveneient,
on the other hand, to restrict the generality, e.g. to con-
sider only completely additive measures. This is because
FA is a subspace of BV, and if we look at a member • of FA
as a game, then the payoff vectors naturally associated
with this game cannot be expected to be completely additive
if L is not; for example, the core of • consists of the
unique point • itself.
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other words, so that each "member" ds of S will obtain

v(ds).

Throughout this paper, we shall deal only with "games

with unrestricted side payments", i.e., games obeying this

condition. Indeed, if this condition were not satisfied,

i.e., if only certain distributions totaling v(S) could

be obtained by S. then the situation would not be adequately

described by the function v. To describe the situation

in this case, one must at least specify, for each S, ex-

actly which distributions of payoff the coalition S can

obtain for its members (cf. [A-Pel]). Such ai- extension

of the underlying model we hope to treat in another paper.
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30. DESCRIPTION OF THE MODEL AND ECONOMIC INTERPRETATION

Let a denote the nonnegative orthant of a Euclidean

space En, whose dimension n will be fixed throughout.

Superscripts will be used to denote coordinates. For x

n i i
and yin E we write x >yif x Z y for all i, x >y

if x > y but not x - y, and x > y if xi > yi for all i.

A real-valued function f on u will be called nondecreasing

if x > y implies f(x) ,- f(y), and increasing if x > y

implies f(x) > f(y). The scalar product Eigxl X y of two

members x and y of En will be denoted x-y. The symbol 0
i i will denote both the number zero and the origin of a

Euclidean space; no confusion will result.

Let IA E NA+; ý. will be fixed throughout. For con-

venience we shall assume that p(I) - 1, although most of

our results, and in particular all those stated in Section

"31, are true without this assumption* as well. If g is

a p-integrable function on I and S e 0, we will use the

notations Jsg, fsgdP, JSg(s)dV(s), and fSg(s)p(ds) inter-

changeably. All occur in the literature, and for different

purposes one or the other will be more convenient. When

the range of integration in an integral is not specified,

*The case of general p(I) + 0 follows trivially from
that in which p(I) - 1.



I -13-

it will be understood to be I; thus Sg and f~g(s)V(ds) are

the same thing. The phrases "integrable", "almost all",

and so on, will be used to mean ",L-integrable", "v-almost

all", and so on.

For each s c I, let a(s) be in a, and let u(., s) be

an increasing nonnegative real-valued function on a. We

will be concerned with the set function v defined by

(30.1) v(S) - max (fsu(x(s), s)d•t(s) : x(s) E a for all s

and -Sed =sadi ,

the maximum being taken over all p-integrable functions x

that satisfy the constraints. Note that the equation in

the constraints is a vector equation; thus when we say

that x is L-integrable, we mean that all its coordinates

are •-iittegrable. Naturally, in order that the integrals

inside the curly brackets be meaningful, it is necessary

to impose certain measurability and integrability condi-

tions on the functions u and a. Furthermore, even if the

integrals involved exist, it is by no means clear or even

always true that the expression being maximized is bounded;
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and even if it is bounded, its supremum may not be attained.*

These matters will be treated in the next section, where

sufficient conditions will be imposed on u and a to ensure

that the integrals involved exist, and that the maximum

exists. In this section we would like to concentrate on

the economic interpretations of the set function v.

The reader will recall from the introduction that

there are two economic interpretations, one in terms of

monetary exchange economies and one in terms of productive

economies. We would like to present the interpretation

in terms of productive economies first, since it is simpler.

There-are n kinds of raw material, and only one kind of

finished good. The space I consists of infinitesimal

producers ds. Given a bundle, (i.e. vector) x in L of

raw materials, producer ds can produce an amount u(x, s)p(ds)

of the finished good. Next, a(s)4(ds) is the bundle of

*It is quite possible for the sup" to exist without the
max existing. We have not treated such situations. One
reason is that they are conceptually somewhat slippery.
It is of course possible to define v(S) by means of the
sup, but the idea of the "worth" of a coalition then loses
some of its intuitive force. The way we are used to think-
ing about core and value would presumably also need some
revision. If, for example, v(I) = v(I), and the sup in
the definition of v(1) is not attained, then we cannot
really think of v as a distribution of the amount avail-
able to I, since v(I) is not really available to I. A more
important reason for insisting that the sup be attained is
that the mathematics would otherwise be even more complicated
than it now is. For a discussion of where one is led if onereplaces "max" by "sup", see Subsection D of Section 33 and
Subsection D of Section 42.



raw materials initially available to the producer ds; hence

the total bundle of raw materials initially available to a

coalition S is Ss(S)iA(ds) - JSadi. Now S may reallocate

this amount among its members in any way it pleases; that

is, if the members of S agree, they may assign to each member

ds of S an amount x(s)p(ds) rather than a(s)p(ds), on condi-

tion that x(s) e n and fxdp = jadp. Then if the maximum in

(30.1) exists, and if S pools and redistributes its resources

and then pools the finished goods produced by all the members,

then the total amount in the resulting pool of finished goods

can be as high as v(S). In short, the coalition S, if it

forms, can obtain for its members a total payoff of v(S);

in this sense, v(S) is the worth of S.*

In the interpretation in terms of monetary exchange

economies there. are n + 1 consumer goods, indexed by 0, 1,
n. The good indexed by 0 is called money and, unlike

the others, may appear in negative as well as positive amounts.

"The space I consists of infinitesimal traders ds, and the

amount of any good typically available to ds will also be

infinitesimal; a typical bundle will have the form (x0 Px)(ds),0

where x0 E E1 and x e Q. Each trader ds has a preference

"*Strictly speaking, we do not have "unrestricted side pay-.
ments" (see Section 29) in this interpretation, since the in-
dividual holdings of the finished good must be nonnegative.
However, since v is monotonic, negative payoffs cannot occur
in the value, nor, for that matter, in the core.
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order-on the set of all such bundles. Money enters into

these preferences in a very special way; specifically,

x0 + u(x, s) is a utility function for the trader ds. In

other words, if (x , x) and (y , y) are in E1 x n, then

ds prefers (x , x)p(ds) to (y O y)i(ds) if and only if

x +,u(x, s) >y 0 +u(y, s).

The consumer ds starts out with no money and. with

the bundle a(s)ji(ds) of goods I, ... , n. By trading, it

may be possible for him to improve his position, i.e., 'to

obtain commodity bundles which he prefers to his initial

bundle. Let S be a coalition '(i.e., Se 0.c), and let x,:be

such that x'(s) e ;Q for all s and dd, This means

that the members of S3 canr trade among, each other--redistri-,

bute their initial resources-in such a way that after

the trade, ds.will be holding 'the bundle x(s)dp(s); of goods

1", ... , n, but ,stIl' no money., The utility to consumer ds

of ýhis new bundie wilfl be u(x(s),, sX•(ds), and 8O if we I
"add" -the -utilities of all gonsumers -in S we will -get a

total of ,su(x(s), i)•.i(dý)-. Let us-choose x so that the

maximum in (30.1)- is. attained; then this total is axactty

-• v(S).
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-Generally-., adding up utilities of differeni, consumers

is an economically meaningless, -procedure. In this case,

however, the availability of money lends significance to

the total utility of S. Indeed, we claim -that. any distr-i-

bution-of util~itids to the consumers in S whose total is

v(S) is achievable by the coalition S. This means that

if v is any measure with v(S) W v(S), then the coalition

S can distribute .its total bundle (0, faga ) so that the

utility of consumer s in S will be v(ds). To see this,

define a measure • by

* C(U) -v(U) S 'U4(x(s),., s)p(ds)

for allUE. ,. Then 0(S) = 0, i.,e., C restricted to S is a

feasible redistributiois among the traders of S of the initial

total-namely* O"-of money available to this coalition. If S

redistributes its money in this way, then each trader ds will

get the bundle (t(ds), x(s)p(ds)), whose utility is

t(ds) + u(,(s), S)p(ds) - v(ds).

Thus this game satisfies the condition of "unrestricted

side payments," and the worth of each coalition S is

adequately- described by the number v(S).
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"The reader is referred to-[S-SI] for a diseussf.on

of the significance of this kind of monetary exchange eco-

"nomy, and its relation to the more ,commonly employed, Wal-

rasian barter model. (See-also Section 32.)

-,•mI

i m m •,



"31. STATEMENT OF MAIN RESULTS

Throughout, the measure p and the functions u and a

will be as specified at the beginning of Sec. 30, and the

set-function v as defined in (30.1).

We shall say that u(x, s) - o(lixil) as ilxi -

integrably in s, if for each E > 0 there is an integrable

"function n on I, such that Iu(x, s)l < elixil whenever

ilxil >g r(s). If i, is bounded, then this is equivalent to

saying that u(x, s) - o(ijxil) as ljxjI - a, uniformly in s.

But in general, the two concepts are not equivalent; for

example, if n - 1, then xi/sl - o(x) integrably, but not

uniformly. The concept of integrable convergence was

introduced in [A-P] in order to deal with the question of

the existence of the maximum in expressions of the form

(30.1).

The function u will be called Borel-nmeasurable if it

is measurable on the product a-field B x 0, where a is the

a-field of Borel subsets of n.

THEOREM G. Assume that a is p-integrable,

and that

(31.1) u is Borel-measurable;
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(31.2) u(x, s) " o(IIxjI) as x -, integrably

in s;

(31.3) for each fixed s, u is continuous on (,

and for each j, ;u(x, s)/axJ exists and

is continuous at each x e n for which*

xi > 0; and

(31.4) a(s) > 0 for all s.

Then v (see- (30.)) is, well-defined** and is in

pNA, and the core of'v consists of a single

payoff vector, which 'coincides' with the value qv.

Theorem G will be proved in Sec. 40,.

Though it is comnon enough in economics, condition

(3 1.4)--total positivity of initial resources--has a certain

slightly restrictive, unintuitive flavor, and it would be

nice if we could dispense with ,it. Two senises. in which this

can in fact be done will now de discussed.*.#* The first is

to demand that there be ,only a finite number of different

*I.e7,* whenever the two-sided partial derivative is

defined.

**I.e., the maximum is attained for all S e a.4

***For a third sense, see Proposition 33..2.
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utility functions for the members of I. Specifically, let

us say that u is of finite type if there is a finite set H

of functions on n such that each of the functions u(., s)

is in H. (Note that this still allows all of the initial

bundles g(s) to be different.) Then we have

PROPOSITION 31.5. Theorem G continues

to hold if (31.4) is replaced by

(31.6) u is of finite type.

Proposition 31.5 will be proved in Section 39.

The other sense in which (31.4) can be dispensed with

is illustrated by the following proposition:

PROPOSITION 31.7. Let u satisfy (31.1),

(31.2), and (31.3). Then v is well defined,

the asymptotic value of v exists, and the core

of v consists of a single payoff vector, which

coincides with the asymptotic value.

Proposition 31.7 will be proved in Section 41. The

proof depends on the "diagonal property" discussed in Sec-

tion 19 (Part II). In fact, we will derive Proposition

31.7 from a more general proposition (Proposition 41.2),

which is stated in terms of concepts related to the diagonal

property.
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Since we know that also the mixing value enjoys the

diagonal property (Proposition 19.3), the question arises

whether Proposition 31.8 could not be proved for the mixing

value as well as the asymptotic value. We do not know the

answer to this question, but the reader will find it discus-

sed in Section 42. Other possibilities for extensions of

the results stated here will also be discussed in Section

42.

o-1
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32. THE COMPETITIVE EQUILIBRIUM

Let IA, u, a, and v be as in Sec. 30. An allocation

is an integrable function x from I to 0 such that

hs- I'd .
A monetary competitive equilibrium (m.c.e.) is a pair

Qx, p), where x is an allocation and p e 0, such that

for all s e I, u(x, s) - p.(x - a(s)) attains its max-

imum (over x e ) at x -x(s). The function on I whose

"value at s is uQx(s), s) - p.64(s) - a(s)) is called the

Scoetitive pavoff density; its indefinite integral* (w.r.t. P)

is called the competitive payoff distribution; and p is the

vector of competitive prices. (All three definitions are,-

of course, with respect to a given m.c.e. 64, p).)

Intuitively, the vector p is a price vector. Thus,

p" 4(s) - a(s))p(ds) represents the amount that the player**

ds must pay in order to buy the bundle x(s)p(ds), over and

above the amount that he gets by selling his initial bundle

a(s)p(ds). This amount must be subtracted from uQx(s), s)p (ds)

in order to yield the net "income" of ds, and it is this

income that ds wishes to maximize. If p is such that when

--*fg is an integrable function on I, the inaefinite
integral of g is the measure v defined by v(S) Jsgdu.

**Producer or trader, according to which interpreta-

tion is being used.



all players maximize in this way, the total demand Jx

equals the total supply Sa, then the economy is in equi-

librium. Note that In the monetary interpretation, the

total excess demand for money at such a point--namely,

- a)--also vanishes.

We shall distinguish the concept Just defined from

the usual Wairasian concept of competitive equilibrium--

"as used, say, in [All--by calling the latter a barter com-

petitive equilibrium (b.c.e.).* To relate the two con-

"cepts, let us consider the monetary exchange economy in-

terpretation of our game, namely, a market in which there

are n + 1 goods 0, 1, ... , n, the O-th good being money.

A b.c.e. in such -a market takes the form of a pair

(Q__, ,() 0, p)), and we may assume w.l.o.g. that p 0 - 1.

"It is then easily verified that such a pair is a b.c.e.

if and only if Qx, p) is an m.c.e. and for all s, X O(s)

p.(a(s) - x(s)). The total utility of the trader ds at

this b.c.e. is then seen to be exactly

(uQS(s), s) - p'-(s) - a(s)))p(ds).

*The b.c.e. will not be formally defined here; the
interested reader is referred to [A1] (for markets with a
continuum of traders) or [D5] (for finite economies). Some
familiarity with the concept of a b.cie. is needed in certain
parts of this section, e.g., in the proof of Proposition 32.5.
It is however not needed in most of this section, eog., for
Propositions 32.1, 32.2, or 32.3 or their proofs. Neither is
it used in the subsequent sections of this paper.
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Note that although a b.c.e. remains a b.c.e. when the prices

are multiplied by a positive constant, this is not the case

for an m.c.e.; there the prices have already been normalized,

so to speak, by the requirement that the price of money be 1.

PROPOSITION 32.1. Let u be Borel measur-

able, and let Ia > 0. Then an integrable2x

maximizes ju(,x(s), s)dU(s) sublect to -

and x(g) e 0 if and only if there is a p such

'that Qx, p) is a monetary competitive equi-

librium.

This is essentially the content of Theorem 5.1 of

[A-P] (cf. Proposition 36.4); it may be considered a form

of the Kuhn-Tucker theorem [K-T] in an infinite dimensional

space. The proposition says that any allocation x for which

v(I) is attained (see (30.1)) is competitive, if the ap-

propriate side payments p-( (s) - a(s)) are made. As for

the prices p, when u is differentiable, then

p -- [•= ux 1 xx(s)

f6r all s such that x (s) > 0 (cf. (32.11)). Thus in the

production interpretation, pi is the marginal product of

the i-th commodity at equilibrium, and in the market in-

terpretation, it is the marginal utility (in both cases

when there is some of the i-th comnodity present at equi-

librium).
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PROPOSITION 32.2. Assume (31.1), (31.2),

and fa > 0. Then there is an m.c.e.

Proof. The nain theorem of [A-P] asserts that under

the conditions we have assumed,* the maximum in the defini-

tion of v is attained (cf. Proposition 36.1). The result

then follows from Proposition 32.1. This completes the

proof of Proposition 32.2.

Without (31.1) and (31.2), there may be no m.c.e.;

see Section 33.

We now wish to discuss how the competitive equilibrium

is related to the core and the value. In an ordinary Wal-

rasian exchange economy** with a continuum of traders, it

is known that the core coincides with the set of \(barter)

competitive allocations*** [A1 ]. It is therefore reason-

able to conjecture that. a similar situation holds for

m.c•.e.'s. This is. in fact the case; indeed we have

PROPOSITION 32.3. Assume (31.1), (31.2),

(31.3), and j'g > O. Then there is aunique

(monetary) competitive payoff distribution,

W*And even slightly weaker conditions'.

**I.e., a "market without side payments".

***A competitive allocation in a barter economy is
an allocation x for which there Jexists a .price vector p
such that (x, P) is, a b.c.e.

i~i
I'I
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which coincides with the unique point* in the

core of v, and so also with the asymptotic

value Tv.

Remark. Note that we are not asserting that the m.c.e.

is unique. What is being asserted is that there is at least

one m.c.e., mnd that if (x, p) is any m.c.e., then

(u(x(s), s) - p'Q(s) -a(s)))dU = (cpv)'(S)

for all S e C.

Proof. By Proposition 32.2., there is an m.c.e. (x, p).

Let v be the corresponding competitive payoff distribution.

Since x is an allocation it follows that

(32.4) v (I) v(I)'.

Next, if S is any coalition, let v(S) be attained at

i.e.,

v(S) = ýu(y(s), s)ds, - ýA, and y(s) ' 0 for all s.

Then by the definition of m.c.e.,

. ee-Froposition 31.7.
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! ~~~uQ(s'), s.) - p.•(s) - a(,)) • ,u(,(s), s) - p.(Q(s.) -a()).

Integrating this aver S. we-obtain

V(S) I v(S) - p.T - a) - v(S) I

together with (32.4), this shows that v is in the core.

But by Proposition 31.7, the core contains a -unique point,

namely the asymptoticq value.; so the proof of Proposition

3'2.3 is complete,.

In-the above proof-, we made' use of the fact that there

is. only one point in the core in order to establish the

Sequivalence between the core and the set of all competi-

tive -payoff- distributions. The proof of uniqueness for

the core, in turn, is intimately bound up with value con-

siderat~ions and with the differentiability of u. But the

equivalence' between the core and the set of competitive

allocations is a much more general phenomenon, which does

.not depend on differentiability, is not directly connected

-with value considerations, and in fact continues to hold

even when the core has many members-. It is therefore of

some Interest to estabtish this. equivalence under condi-

tions that are more genieral than those of Proposition 32.3

even though there is no difect •connectionbetwen this and

the value.

S

÷_I
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PROPOSITION-32.5. Assume that u is con-

tinuous in x for each fixed s and is Borel

measurable, that v iý,, well-definedI* and that

a > 0. Then the core of v coincides with

the-set of (monetary) competitive payoff dis-

tributions.

Proof. The idea of the proof is to introduce "money"

explicitly, as in the monetary exchange interpretation of

our economy. We then get an ý(n + l)-good market whose

b.c.e.'s are in 1 - 1 correspondence with the m.c.e.'s of

the original economy, and whose core corresponds** to the

core of v. We may now apply the "equivalence theorem" for

barter economies ,(see, e.g., [A 1 ]), according to which the

core of such an economy coincides with the set of all barter

competitive allocations (b.c.a. 's)--i.e., allocations ,assoc-

iated with some b.c.e. Since the core of the (n+l)-good

A barter economy corresponds to the core of the original

rn-good monetary economy, we 'may deduce the equivalence in

the original monetary economy.

A - wI.e. , that for each S. the maximum in the definition
of v(S) is attained; (31.2) is a sufficient condition for
this, but it is not necessary. Incidentally, all that is
needed for this proposition is that the max in the defini-
tion of v(I) be achieved; if for the other S, v(S) is de-
fined to be the sup rather than the max, the proposition
remains true.

**It -is in establishing the correspondence between the
cores that one uses the assumption that the max in the def-
Sinition of v(I) is-achieved.
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Unfortunately, we are unable to use the equivalence

theorem of [All for this purpose, for the following reason:

In the (n+l)-good barter economy, money is available in

negative as well as nonnegative quantities, whereas all

other goods are availablec in nonnegative quantities only.

Therefore- the space of all commodity bundles is not the

nonnegative .orthant of En+l, but raAther E1 x n,, where El

is the entire real line and-n is the nonnegative orthant

of En. But the equivalence theorem of [A1 ] is stated only

for the ,case in which the space of c6mmodity bundles is

precisely the nonnegative orthant.*

Fortunately, a more general form of the equivalence

theorem is available [Hi]; in this theorem, for each s e I

there is a consumption set X(s), which is only assumed to

be a- convex subset of En (rather than X(s) = n, as in

[A1]). To describe the result, we must recall the concept

of a quasi-competitive allocation (in a barter economy),

due to Debreu [D6]; it is an allocation x for' which there

exists a price vector p, such that for almost ail s, either

-(s) .is maximal in the budget set of s, or p. (s) is the

minimum of p'x as x ranges over the consumption ;set X(s).

We then have, under appropriate conditions, that -

*Though we believe that the proof in [Al] would go

-" •through in the case considered- here without any diffi-
culty.
• l •'•- --J -

• ';kI

:•_I
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(32.6) the core coincides with the set of

quasi-competitive allocations

[Hi, Theorem 2, p. 448]. In our application, where X(s) -

El x 0 for all s, we now show

(32.7) every quasi-competitive allocation is competitive.

Indeed, if the price of money is not 0, then p-x takes

arbitrarily small values in Ex , so the minimum cannot

be attained at all, and (32.7) follows immediately. If

the price of money is 0, then no x(s) can be maximal in

the budget set of s, because by adding some money to x(s)

one gets a more preferred* bundle while still remaining in

the budget set. So

(32.8) p'x(s) ain (p-x : x e El X n)

for all s. Now since the price of money vanishes there

must be at least one ordinary good with a nonvanishing

price, say the good indexed by 1. If all prices are non-

negative, then it follows that pl > 0; since rzI =jal > 0,

there is an s with xl(s) > 0, so

1 _eca that (x X) > (y 0 y) (X) + X0 > u(y) + y 0
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p'x(s) p x (s) > 0 - mn (p.x : x c E1 x n),

in contradiction to (32.8). If at least one price is nega-

tive, then the minimum on the right side of (32.8) cannot be

attained, since the infimum is -a; so again (32.8) is con-

tradicted. Thus (32.7) is established, and so from (32.6)

it follows that the core coincides wvth the set of competi-

tive allocations. As for the "appropriate conditions"

needed for Hildenbrand's theorem, these include continuity

and measurability of the preferences and a local non-

satiation condition, and are all easily verified here.

Hildenbrand's set-up also includes production sets for all

coalitions, but this can be dispensed with *here; We simply

let the production-sets coincide with the nonpositive

orthant.

Sutming up, we have shown that Hildenbrand's aiesult

yields the Equivalence Theorem for the barter economy cor-

responding to our original monetary economy. The remainder

of the proof can now be completed as outlined above. This

completes the proof of Proposition 32.5.

In the proofs of the theorems stated in Section 31,

the uniqueness of the core* is established via value con-

siderations, using Theorem F; strong use is thereby made

-WfT5 is a rather loose, though convenient, method of
expression. Strictly speaking, it is the point in the core
that is unique; the core itself, as a set, is trivially
unique, in any game.
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of the "differentiability" of v--i.e., the existence of

6v*(t, S)--along the diagonal, and this in turn depends

on the differentiability of u. Proposition 32.5 gives

us an opportunity to establish the uniqueness of the core

in, a different manner., by proving the uniqueness of the

competitive payoff distribution. As may be expected, this

too depends on the differentiability of u.

Let u satisfy (31.1) and (31.3), and let Ja > 0. Let

( ,. p) be an m.c.e. From the definition of m.c.e. it then

follows that for all x e n,

UW~s), s) - p.x(s) I u(x, s) -px,

whence

(32.9) u(x, s) - UX(2(s), s) 15 p-(Xx - ):

Setting x 'i(s) + 6ej for a given J and letting 6, 0+,,

we-,deduce

(32.10) [au/axi]X. S J.

If, moreover, x (s) > 0, then we may let 6 -. 0-, obtain-

ing the inequality opposite to (32.10); together, they

yield
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(32.11) [u/lx]x(s) J whenever xJ(s) > 0.

Since ej J - >ai 0, there must be an s such that x (s) > 0.

Thus the competitive prices are uniquely determined. But

then there can be at most one competitive payoff density,

namely

(32.12) max (u(x, s) - p'(x- 4(s)),

and so at most one competitive payoff distribution.

If, moreover, u also satisfies (31.2), then by Prop-

osition 32.2, there is an m.c.e., i.e., the max in (32.12)

is attained. Thus we have provided an alternative proof,

which does not depend on the value concept, of all but the

last clause of Proposition 32.3.

Theorem F provides a direct connection between the

value and the core, and what we have just said provides

the corresponding connection between the m.c.e. and the

core. To complete the triangle, we now demonstrate directly

how the value is connected with the m.c.e., without con-

sidering the core. Unlike the previous demonstrations,

though, this demonstration will have a heuristic rather

than a strictly rigorous nature.*

*Though there were gaps in the previous demonstrations,
Sthey are relatively easily filled in. The gaps in the pre-

sent argument are more serious.

= m cz-.. .. ... .. .• . . ... . . . .... ... ...
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If x is a measurable function from Ito n, we will

find it convenient slightly to abuse our notation by zwrit-

ing u(x) for the function on I whose value at s is
ui s,s).

Assume that it has been established that v e pNA.

If f is an ideal set (see Part III), it then seems reason-

able to suppose that

(32.13) v*(f) -maxtfu(x)f : [xf - faf and x(s) 1 0 for all s).

Assuming (32.13), let us, for given S e C, and t e (001)2

calculate the expression

bv*(t, S) - 1 v*(tX T + T7S) " v*(tX1)

From (32.13) it follows that

v*(txI) tv(I) S•tu(•)i

where x is the allocation at which v(I) is achieved. Now

let v*(tX1I + Ty)be achieved at y.Then for sufficiently

small r, we have

I:
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(32.14) v*(tXI + rxi) - .'(u() - u(x))(txi + rXS) + ,.ru(,)
S

! S[P.Q - x)] (t +X s ) + lr u(.)

- p'I(.a - x)(txI + TXS) + ju('x)

M tpj'(,e - X) + 'r a- x)+ rJu(x)

- 0 + er(u(,x) - p,'( - s)),

and hence

(32.15) av*(t, S) I .(u(') - p(x - )

We can, however, say more, namely that equality holds in

(32.15). To show this, it is only necessary to point to

a x• such that

(32.16) .(tXl + rXS)v fj (tXl + rXS)a and I(s) k 0 for all s,

for which the inequality in (32.14) becomes an equality up

to a term that is o(.). Now it is always possible to find

a j satisfying (32.16) which will have the property that

J(s) 6V0,never xJ(s)-= 0; and moreover, such that

j (-s)'- x)i(s) + Kj (s)T for all s, where KJ(s) is a constant

that depend&:On j and on whether s is or is not in S, but

otherwise 4loes not depend on s or on ,. From this and

(32,; 1) it :fol-l-ows that equality holds in (32.14), and
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hence in (32.15). But .then. it follows from Theorem E

that the value mv coincides with the competitive payoff

distribution.

The two major gaps in this argument are the unproven

"assumptions that v e pNA and that v* is given by (32.13).

Given v c pNA, (32.13) is probably not too hard to prove,

e.g. by the theorems of Section 25. But to prove v e pNA,

say from the assumptions of Theorem G, is a serious bit

of work. Indeed, it is precisely this that constitutes

the most difficult part of the proof of Theorem G, and it

will require every bit of Sections 35 through 40 before it

is done.

We repeat, though, that our proof of Theorem G will

not depend on the above argument (nor will it depend ex-

plicitly on the m.c.e. at all); rather, it will use Theorem

F, i.e., it will depend on core considerations only. The

above arguments were only given to shed light on the rela-

tions between core, value, and competitive equilibrium,

from several different viewpoints. From the point of view

of this paper, the m.c.e. is strictly speaking not needed

at all; and if it is introduced, it is most directly related

to the: core and: the value via the first proof of Proposition

32.3 given above.

'5
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33. EAMP"LES

In all the numbered examples of this section,* I will

be the unit interval [0,1]., C, the Borel a-field S. and v

Lebesque measure X.

A. The Case n - l

In the production interpretation, n - 1 means that

the finished good is produced from only one kind of raw

material, though the efficiency of production of the var-

ious traders ds--i.e., the production functions u.(.,s)jA(ds)--

may be different.** In the exchange interpretation, we are

dealing with a market in which only one kind of good is

being bought and sold (for money), the demand for (and

supply of) this one good being created by the different

utility functions u(.,s)p(ds) that the traders ds have for

the good. Conceptually and computationally, this case is

somewhat easier to deal with than the one of general n.

Yet it is far from trivial, and its analysis involves most

of the basic ideas that are met with in the general case.

Example 33.1. Let .n = 1, and for all s, let

*Examples 33.1, 33.3, 33.6, 33.9, 33.11, 33.12, 33.13.

**It may even happen that one trader produces more
efficiently than another at a certain level, whereas the
other produces more efficiently than the first at a dif-
ferent level.
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u(x, s) - Ti -i

(see Fig. 1) and

a(s) - 1/32.

This market satisfies (31.1), (31.2), (31.3), and (31.4).

Therefore, from;Theorem G and Proposition 32.3, it follows

that v e pNA, the core of v and the m.c.e. are unique, and

both coincide with the value. It is easiest to compute the

m.c.e., making use of (32.10) and (32.11). The idea of

the computation is that the higher the price p is, the

smaller will be the total demand for the good x; we must

-find a price at which the total demand exactly matches the

total supply ,'a = 1/32. Suppose then that the price is p;

'let x(s)i±(ds) be the demand of ds. Then by (32.10), if

x('s) > Q, we have

p [aU/axxs(s) + s _

hence

x (s) = - s and u(s), S)
4p

By (32,.11), if x(s) = 0', then
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P s =01

s =1/16
3/4 - .

u .•s, -1/4 •

1/2,- s= 1/2
US

1/4

s1/4 1/2 3/41

Fig.1 -The function u(s, x) for Example 33,.1

s= 1

I
!

I ., _
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/ [bu/aXxlx° < p;

hence,

4- -s O.

Thus, we conclude that in any case

X(s) " max (0, s).

Hence,

1

1 1

4 sds [s 2 4p -z~
0 32p4

Hence p 1 1, and it follows that

1 1.~d 1 2 (1)3/2 -1V -(2~s),(, s),ds ( ns , ds 747213/

The competitive payoff density is

[u(x(s), s) - p'x(s)] + p.a(s)

when--s " this consists simply of p-&(s) = When
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s • we have in addition to this amount, the amount

1 1 ~1 2

which ranges from 0 at s = to at s 0. The situation

is pictured in Fig. 2 (solid lines). The slopes of the

u-curves at x = x(s) (dashed line in Fig. 1) are all equal

to the competitive price of 1 when x(s) > 0, but when

x(s) - 0 the tangent ,at 0 may have a slope smaller than 1.

Note that the competitive payoff density may be thought

of as consisting of two parts, namely p.a(s) end u(x(s), s) -

ptx(s). In the production interpretation these two parts

may be thought of as follows; the first part is compensa-

tion to ds in his role as supplier, and is always divided

among the players in proportion*_ to a(s). The second part

is attributable to his role as producer•, i.e., to his u-

function.(u*",s), and does not depend in any-way on his

initial bundle** a(s).

*This neeus' no interpretation when n W h. When n > I,
it means in proportion to p-a(s). However,, even when n,> I,,
if one trader's initial bund-e density is exactly twice
that of another,-in the vectoi Lal sense--hthen that part of
his payoff density attributable to his role as a supplier
will also be twice that of the other trader.

**It is interesting to remark that this division into
two parts with the above properties is far from trivial if
one looks at the payoff from the, value or core point of
view.

I!
[.
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x

CoMpetitive.

initialmodified hiitial

* ~1/32-

01/4 1/2

Allocation densitie;P

II

1/32'

0o11 /4' s/

Paybff densities,

Fig.2 Competitive solution for Exampl'e 33.1
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[I
If, for example, we redefine the initial bundle dis-

tribution here by

O, 0: s S -
a (s) - 1

then our calculation will remain essentially unchanged,

the only difference occurring in the payoff density.

This is illustrated by the dashed lines in Fig. 2. The

players ds for s e [0,q] will act as producers, and will

obtain a payoff ,density of 1 + s - ,I-; they will obtain

nothing- as suppliers, since they have no initial bundles.

For s e .the players have no initial supplies,

neither are they sxfficientiy efficient to produce; there-

fore, their payoff is 0. The remaining players (@hose

between ½ and 1) get a payoff density of 1/16, in propor-

tion to their initial holdings; but they ,are not sufficiently

efficient as producers to act in this capacity. One might

say that they sell their initial, holdings to the efficient

Iproducers between 0 and W in return for a promise of man-

ufactured goods.

This second version of the example does not satisfy

(31.4), and therefore we cannot deduce from Theorem U that

v e pNA. However, we have

PROPOSITION 33.2. In Theorem G, (31.4)

may be replaced by the assumption that n = 1.
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This proposition will be proved in Section 40, together*

with Theorem G. Readers who have followed the preceding

example will realize that even when n - 1, the -assumption

a(s) > 0 is by no means of a trivial nature;** players for

whom a(s) - 0 may still have considerable significance as

producers (in the production interpretation), even though

they supply none of the initial good. Thus Proposition

33.2 is by no means an easy consequence of Theorem G.

B. The Finite Typ.e Case-

Suppose that u satisfies (31.1), (31.2), and (31.3),

and moreover it is of -finite type,; that is, there are fi-

nitely many functions fl, . k on 0 such that each, of

the functions u(.,s) is one of the f." Define a k-dinien-

sional vector ,j of mneasures on I by

Sn l-'s) = s :u(., s) f ,-

and-an-n-dimensional vector - of measures on I by

N-p- pre cisely, a common general-zation (Proposition

40.26) of Theorem Grand Proposition 33.:2 will be proved.

**As it, would be (because of n - 1) in most discus-
sions of a barter ecopomyý When money is Lktroduced.-ex-
plicitly, a monetary economy with n I 1 beuom"'s a bartereconomy with n = 2 (cf. the proof of Prcposition 32.5),,-
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Let v - . Then v is a function* of the n + k dimen-

sional vector v, say

V - gov9 V

Let us calcualte g in a specific example.

Ecample 33.3. Let -n I 1 and for all s, let

u(x, s) x - 1

aud

a(q)- 8s.

-In thisý case, both n (which. X}) and • are, one-dimens-ional,I

sov -I Fi, '0 ) i• two-dimensional., The range R of v" is

depicted in Fig. 3; -note- that it -iS -not isynietric around

the diagonal, but rather '(as always) around the center of

the. diagonal. It may be seen that ,V = gov, where

g•g(~y, z)- [' ' =,NY+z Y Ii

*Eorr a- detaileo' discussion, see Section 39,, iin pai-
ticuiar formulas (39.7>' and (39,l8).

I -

-_-J
o4
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e (1,s1)
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We would now like to apply Theorem B to deduce* that v c pNA

and to obtain the value cpv. Unfortunately, this is impos-

sible, because the conditions of Theorem B fail; g is not

continuously differentiable on the range R. Indeed, we

have

(33.4) ag/az - ,/y/(y + z).

If we let (y, z) - 0 along the diagonal, then ag/az - 1/2/7,

whereas if we let (y, z) - 0 along the bottom boundary of

R, then Bg/bz - .. Hence, ag/Bz cannot be extended to all

of R so that it will be continuous at 0.

"Though Theorem B is not applicable, Proposition 9.17

is, and we apply it to deduce that v e pNA. To calculate

the value vv, we would like to use the "diagonal formula"

(3.2). Though we have not heretofore proved this under

the conditions of Propositiobn 9.17, it does in fact hold

under those conditions,* ljbsing " (33.04ahd

*Of course we know 6r6m. Prop6sition 31.5 that v e pNA;
what we are investigatihg here is whether a simple proof
can be obtained for -hls very simple special case.

**Probably the 4easiest way. to establish this at this
stage of the game is to use Theorem.E. If one wants to
restrict oneself to- mcie elementary methods, it is not
difficult to d se A proof using Propobsition 9.7, and
the fact that f o. -patisfies the conditions of Theorem B.
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"2y + z)

we thus obtain

(33.5) (cpv) (S) I i(S) (t, t)dt + C(S) (t, t)dt

- (-- 1),n(S.) + .•L•(s).

In the production interpretation,, the first and second terms

may be considered compensation to the members of S in their

roles as producers and suppliers respectively (cf. the dis-

cussion of Example 33.1). As we shall see in Section 39,

gov satisfies the conditions of Proposition 9,.17 whenever

u is of finite type, and so the value formula Applies,

This implies a decomposition of cv into a term involving

Sj only (production) and a term involving C only (supply),'

s6 that for the finite type case we have a derivation of

"this phenomenon from value considerations as well.
In this example, v(S) is ,alway3 achieved by x(s) ,

in particular, v(I) is achieved byx(s) 1. Hence in the

m.c.,e.., we have

p i,[u/Xxi .[ •p Iu ]X xil = 22•

Hence, for all s, the competitive payoff density is given

by



u(x(s), s) - p.(x(s) - (s)) s) + 1 - 1 -1-i.-- (x(s) - s)

22j-•- - L+ -- s

3 _. - + .--- s;

hence the competitive payoff distribution is given by (33.5),

which is as it should be. In the general finite type case

as well, it may be seen by direct computations that the

diagonal formula for the value yields the competitive pay-

off distributions (cf. Section 39, especially the material

following '(39.7)).

The main point of Example 33.3 was to show that Theorem

B is not sufficient to deal even with the simplest* finitel

type cases, ut that Proposition 9.17 is needed. In Sec-

tion 39 we shall see that Proposition 9.17 is indeed suf-

ficient to cover the general finite type case.

C. Differentiability

To show that condition (31.3) cannot be dispensed

withi consider the following market.:

Example 33.6. Let n = 1, and for all s, let

'"e used A/ -T - 1 rather than simply J .in order
- to show that even when u is differentiable on the n-dimen-

sional nonnegative orthant, g may not be differentiable
on the nqi-k-dimensional orthant, and Theorem B may not •be
applicable.i V

LI
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u(x, S) " $ t., for x <. 1

and

3/2, for s _

( 1/2, for s >

The function u(x, s) is graphed in Fig. 4. It is not dif-

ferentiable at 1; the left. derivative is 1, and the right

derivative is Thus we define x(s) =l, then (A, p) is

an m.c.e. whenever ½< p < 1, because the line through

(i, 1) with slope p supports the graph of u 'for those

i values of p. The competitive payoff density correspond-

ing to a, given value of p will therefore be

u(x(s), s) - p.((s) - M p f s•1 p, for s >

The competitive payoff distribution is therefore -given. by

(33.7) (S) - (1 + P)X(S x [0, ]) + (I - jp_)X(S -n [_ -lD]. :-

It follows from :Proposition 32.5 that the core of the market
is the set of, all 9., where - ranges f 1rn to 1. 1 par-

ticular, it c0nsists of more -than one point, so, that the

conclusion of Theorem G (and also that of Proposition 31.7)

fails.

A

A

I-,
-• P . . . . . . . . . .. . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . .



x

x

fig.4- The function u s, x) for Example 33.6

4),1

Fig.5 -The range of (X,C in Example 33.6
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We can also calculate the core directly. Let C(S) -

a; the range of (X, •) is depicted in Fig. 5. It may be

verified that

(33.8) v - min (Q, /r').

Since I + X) • / and c(I) = X(I) - 1, it follows that

the core of v contains all conver. combinations of the form

tc + (I - t)k, with < t < 1; these are precisely the 9p

of (33.7).

The reader will note the similarity between formulas

(33.8) and (3.4); in neither case does v belong to pNA.

Indeed, the proof that the v of (33.8) does not belong to

pNA can be carried out along the same lines as the proof

of Example 5.8 appearing at the end of Section 27. Rather

than doing this in detail, though, we will present another

nondifferentiable market more directly related to (3.4)

and Example 5.8.

Example 33.9. Define a function f on the nonnegative

half-line by

S xj for 0 =< x ýg 1
-i -2, for a s x

(see Fig. 6). Let n -2, a4nd for all s,, let
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f( x) I

x

Fig.6-The function f(x) in Example 33.9

I

_ ,I
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I
u(x, s) - f(min(x 1  x 2) + (xl + x 2 )/10))

and

i3 1 1a(), ½) for 0 sa s = 1% 3 1
k 3  for -7< s .

This is often called the "glove market"; it has the follow-

ing (exchange) interpretation:* The commodities 1 and 2

are left and right gloves respectively. Individual gloves

are next to useless,, being, useable only for the material

in them (this accoujits for the 'term (xI + x2 )/10, which

is needed so that u be strictly increasing). Pairs of

gloves, however, can be used as gloves. The utility for

pairs of gloves and for material is bounded, being governed

by the function f (this is needed to ensure that (31.2)' is

obeyed).

It is easy to see that v(I) is achieved for x(s) (1, 1).

The prices p must satisfy

pl 1 0.1, p2 k 0.1, p1 + p 2 .1.2;

otherwise, however, they are arbitrary. In other words, p

may be any convex combination of (1.1, 0.1) and (0.1, 1.1).

The set of all competitive payoff distributions--i.e., the

core--may be easily calculated from this. Alternatively

WCf. IS-S3], pp. 342-347.

J



we may proceed as follows: Define C(S) - . Then

(33.10) v - min( 1 C 2) + .% (•i + c2 ),

and it is easily verified from this- that any convex combin-

ation of C1 + 1 Q 1 + C2 ) and 2+ ' (c + C2) is in the

core of v. But if we set

X1(s) - x(s n [0, ½])

X2 (S)- (S f [½, 1]),

then from (33.10) it follows that

v U Q + C ) + , -l 1•• 1,- x + • ,x -

and hence it follows immediately from Example 5.8 that

v 4 pNA.

D. Achievement of the Max in the Definition of v

If condition (31.2) is not obeyed, the max in the

definition of v(S) may not be achieved, even though the

sup may be finite. The following example of this is from

[A - P]:

Example 33.11. Let n 1 1, and for all s, let

f
I
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u(x, s) - xs

and

a(s)-1I= I
In this case, the integral appearing in the definition of

v(I) is sx'(s)ds, and this must be maximized subject to

- 1; the supremum in this case is 1, but it is not

achieved.

Since v(I) is not achieved, it follows from Proposi-

tion 32.1 that this economy has no m.c.e. Therefore, one

cannot hope to extend Proposition 32.3, according to which

the core, value, and competitive payoff distributions all

coincide, to this situation. But possibly an extension of

Theorem G could be proved, i.e., maybe we could show that

if in the definition (31.1) of v we replace max by sup,

then the core would consist of a single point, v would be

in pNA, and the value cv would coincide with the single

point in the core.

Under this new definition of v, the v for Example

33.11 is given by*

"v(S) - X(S) (ess. sup. S).

*ess. sup. S is the essential supremum of S, i.e., the
smallest number a with the property that x(S n [0, lI) = 0.



The core of this v consists of a single point, namely X.

Indeed, it is easy to see that X is in the core. Suppose

that the core also contains another point, say v. Since

v 0 X, there is a set S such that v(S) < X(S); let k be

sufficiently large so that 1/k < X(S) - v(S). Divide I

into k disjoint sets each of which has essential supremum

1. For at least one of these sets--let us call it T--we

must have

v(T) g v(I)/k - I/k.

Since v is nonnegative (because v(S) I v(S)), it follows

that

v(S U T) g v(S), + v(T) < A(S);

on the other hand

v(SUT) Z v(SUT) - A(SUT) ess.sup. (SUT) ? X(S) ess.sup. T X A(S).

This contradiction proves that the core indeed contains

only the point A

Unfortunately, though, v is not in pNA; in fact, it

is not even in AC. To see this, let us define an arbitrary

set function v to be continuous at S, where S e C,, if for

all nondecreasing sequences (Si) such that USi = S, and all

nonincreasing sequences (Si] such that nsi - S, we have
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lir v(Si) - v(S).

It is easily verified that every member of AC is continuous

at every S e 0. But the v of Example 33.11 is almost never*

continuous. For example, if S - [0, 1 and Si - [0, U

[1 - I, 1], then (Si) is a monotone nonincreasing sequence

and fSi = S; but

tim v(Si) =½> -V(s).•

Therefore, v 4 AC and a fortiori v 4 pNA, and so Theorem G

cannot be generalized to this situation.

There is, however, still some hope that Proposition

31.7 might be generalizable, i.e., that we might be able

to show that the core is unique, and that its asymptotic

value exists and equals the unique point in the core. In

the case of Example 33.11, this is indeed the case. We

have already seen that the core consists of the unique,

point V-. To see that the asymptotic value exists and

equals X, consider a partition of I into a large number

of small sets** SI, ... , Sk. In a random ordering of the

Si, there will with high probability be an Si near the

W"*tis continuous only at those S for which ess. sup.
S - 0 (i.e., X(S) - 0) or ess. sup. S - 1.

**For definiteness one can think of intervals of equal
length, but the argument goes through perfectly well with-
out any such assumption.
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beginning of the orderinr whose essential supremum is close

to 1. This means that with high probability most of the Si

will be contributing approximately X(Si) to v(S), and our

assertion about the asymptotic value follows from this.

Of course the argument as given here is heuristic, but

the reader may convince himself that it is easily made

precise. f

Unfortunately, our relatively good fortune in being

able to generalize Proposition 31.7 in the case of Example

33.11 does not extend to any appreciable class of games.

We now bring an example of an economy satisfying all our

assumptions except (31.2), in which the core of v contains

many points.*

Example 33.12. Let n - 2, let

(xl)/s 2 1/s s

(x1 + x2) - ((x 1 + (x ) ) when s e (0, 1),

x1 + x2 when s 0 or s -,

and let

( 1(1/2, 3/2) when s e [0, ½],
a 1(3/2, 1/2) when se (e , 1].

Here, the exact form of u is of no importance; what is

needed is only that for fixed s, u be increasing, dif-

ferentiable, and homogeneous of degree 1 in x, that for

wwh he max in (30.1) is replaced by sup.



s e (0, 1) u be decreasing in s for fixed x, and that

lims, 0 u(x, s) - min (x1 x ).

The form of u at s - 0 and at s - I is of no importance.

Define a vector measure • by

c(S) a .

Then,**

(S) minQ1n(•l(s), C2(S))' when ess. inf. S - 0

iu(C(S), ess. inf. S), when ess. inf. S > 0.

From this it follows that C 1 C 2, and any convex combina
tion ofand in the rof v and so the core
contains more than one point. Therefore without (31.2)
or at least some condition that guarantees that v(I) is
attained, there is no hope for generalizing Proposition

31.7 either.

Proposition 31.5 cannot be extended either. Rather

than describing the example in detail, we will indicate
it by means of a figure.

Wes.isTnf. S is the essential infimum of S; it isdefined to be the largest a such that X(S A [0, a]) M C



-62- i

Example 33.13. Let n - 2, and let

f(x) - min(x , x2) + x + x2

For all s, u(x) - u(x, s) is defined to be f(x) when x is

not in the interior of the central region C in Fig. 7,

while in the interior of C it is defined so that it is non-

negative, differentiable, increasing, and ; f(x). The

initial bundle a is defined by

((1/2, 3/2), when s e [0, 1,
1(/91/2), when se(. ]

The smallest concave function that is ? u(x) is f(x).

Readers familiar with the methods of [A-P] (compare also

Proposition 39.3) will be able to deduce without difficulty

that v = foC where C is given by-C(S) - 0;this may also

be seen directly via Lyapunov's theorem [L]. In any case

we see that the core of v contains 2CI + C2 C1 + 2C2, and

all convex combinations of these two measures.

What happens if we require (instead of (31.2)) that

u([,s) beuconcave for each fixed s? If u is not required

to be of finite type, then this does not help; indeed,

rI
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XIX

X22
x2 xl)

•x 2 = xI_1•

xl

C

x1

Fig.7--The region C in Example 33.13

1?

"'I
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the u of Example 33.12 has this property.* If u is of

finite type, then we are in a situation where all the

v(S) are attained in spite of the fact that (31.2) does

not hold. This situation will be discussed further in

Section 42.

*It 'Tseven strictly concave.

K' -
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34. DISCUSSION OF THE LITERATURE

The fact that in a barter economy with a continuum

of traders, the core coincides with the set of all competi-

tive allocations has been discussed extensively in the lit-

erature; see, for example, [Al, C, Hi, V1. The same prin-

ciple, in a different form, is embodied in the theorem of

[D-Scal; there it is proved that under appropriate condi-

tions, the core of an n-person barter economy "tends", in.

a certain sense, to the set of all competitive allocations

as n *. To distinguish these two kinds of theorems, let

us call the former a continuous theorem, the latter an

asymptotic theorem.

Monetary economies-with finitely many agents* were

introduced in [Shul. They were subsequently studied by

Shapley and Shubik in a number of papers [e.g., S-S i S-S2'

S-S3, 5 , $81. Aside from the intrinsic interest of such

economies, +they are interesting as special cases of the

more genera\I Walrasian barter economies;** indeed, in a

nuimber of instances, results first obtained for monetary

economies were subsequently generalized to barter economies.

%We use this term to mean either "trader" or "producer",
according to the interpretation. Monetary economies with
finitely many agents are defined in a manner entirely analo-
gous to the continuous monetary economies defined in this paper.

**Monetary economies are easier to deal with than barter
economies because they can be modelled as games with side
payments--i.e., with a numerical characteristic function--
which barter economies in general cannot. Compare the end
of Section 29, also [S-S 1], p. 808.
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The problem studied in this paper from a "continuous"

viewpoint was studied in [S81 from an "asymptotic" view-

point. Specifically, consider a monetary economy with a

fixed finite number m of types of agents, where unlike here,

the type of an agent is determined both by his initial bundle

and his utility* function. Let there be k agents of each

type. Assume that the utility function of each agent is

concave and differentiable (in the sense of (31.3)). Then

as k - a. the Shapley value of each trader tends, uniformly,

to what he would get under an m.c.e.

This theorem can be compared and contrasted with our

results in a number of respects. The most obvious difference

is, of course, the fact that ours are continuous theorems,

whereas that of [S81 is an "asymptotic" one. The comparison

in this case turns out to be typical of similar comparisons

between continuous and asymptotic theorems in other cases.

First of all, continuous theorems are-usually

"cleaner" in their statement: they assert equality, where-

as asymptotic theorems assert only that a certain limiting

relation holds. This is exactly the situation here, To

some extent, of course, the difference is illusory; in the

continuous result, the limit notion is often built into

the definition of the objects about •which one is asserting

equalities. Let us, for example, compare the main theorem

of [S81 with Proposition 31.7: in the former, one considers

*We sal use this term to mean utility function in the
exchange interpretation, production function in the produc-tion interpretation.
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the limit of values of a certain sequence of finite econ-

omies; in the latter, one considers immediately a contin-

uous economy, but defines its value via a sequence of values

of finite games. One may avoid such a process by using the

"axiomatic" value, as in Theorem G; nevertheless, the axio-

matic value appearing there does, in fact, equal the asympto-

tic value. The core notion is less directly related to

finite games; but even this could easily be defined asympto-

tically. One must remember also that the whole notion of

a game with a continuum of players is intuitively appealing

only in the sense that it somehow approximates a large finite

game; in a sense, therefore, the asymptotic approach is

more direct. Thus we may sum up by saying that here, as

usual in such situations, the continuous approach yields

cleaner results, but is somewhat more sophisticated, con-

ceptually as well as in its use of mathematical tools.

A more important difference, perhaps, is that asympto-

tic theorems usually require far stronger assumptions than

continuous theorems. Outstanding among such assumptions--

here as in other cases--is that the number of types of

traders is a fixed finite number. Concavity (or quasi-

concavity) of preferences is also often required in asymp-

totic theorems, but not in continuous ones, and this is the

case here as well. There is one respect in which the asymp-

totic result of [S8] assumes less than we do here, and that

is in the behaviour of u; we assume that u is increasing
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and that u(x) = o(lixII) as lixjl - w, whereas neither assump-

tion is needed in [S8]. However if, as in [$S8, we assume

concavity and finite type, then we might be able to dispense

with these two assumptions* on u.

Finally, it may be remarked that the asymptotic results

imply a framework within which the manner and rate of con-

vergence can be discussed. The continuous formulation, by

its nature, precludes such considerations.

7C-,tTMe end of Section 42.

V
I

S. o II
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35. THE SPACE 1i

The proof of Theorem G will proceed as follows: First

we shall prove Proposition 31.5, which assumes that u is of

finite type. To go from this to Theorem G, we shall approxi-

mate to general u's by u's of finite type. Now each u may

be viewed as a family of functions u(.,s) on 0. We shall

say that two u's are close, if roughly speaking , they are

close for all but a small set of s's. But for this one

needs a metric on the space of functions on 0 of which the

functions u(.,s) are typical. In this section, we shall

define such a metric, use it to define precisely the above-

mentioned notion of closeness between two u's, and finally,

prove that, any u can then be approximated by a u of finite

type.

We shall assume w.l.o.g, that p(I) = 1. For x e f,
n i

we shall write Ex to mean E n x .

Let % denote the set of all real-valued functions

f on 0 that are continuous, are nondecreasing, vanish at

0, and satisfy

(35.1) f(x) = o(tx) as Ex -.

Let a1 denote the set of all f in o that are increasing

(rather than just nondecreasing) and

I
I :
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(35.2) have continuous partial derivatives fJ(x) -

af/axi at each x e D for which xi > 0.

Note that (35.1) is equivalent to the condition

(35.3) f(x) = o(IIx-1) as jx-..

since

(35.4) 1i. zx < Ix<z

for all x E a.

Let a be a or ai" If 4 is the linear span of a (i.e.,

the set of all finite linear combinations of members of a),

then we impose a norm on j by

Rdl - SUPxeo I g(x)I/(G + EX);

that this norm is finite follows from (35.1). This norm

induces a metric and hence a topology on •, and hence on
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PROPOSITION 35.5. VI has a denumerable

dense subset.

Proof. Let ji' denote the one-point compactification

of o, which is obtained from a by adding a point that we

shall call .. If f c aI. then the function f(x)/(l + Ex)

can be extended in a natural way from 0 to W by defining

it to be 0 at -; it will then be continuous on all of o'.

Let I be the set of all functions f' on a', such that

f'(w) - 0 and for some f e al' we have

f'(x) f(x)/(l + Ex)

for all x e a. aI is in 1-- correspondence with T under

the correspondence

f'(x) w- f(x)/(l + Ex).

Now ; is a subspace of the space C(&') of all continuous

functions on l'; if we impose the uniform convergence

metric on C(U'), it then follows from the compactness of

a' and the Stone-Weierstrass theorem that C(W') has a

denumerable dense subset. But since it is metric,, it
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follows that it has a denumerable basis; hence also a

has a denumerable basis, in the uniform convergence top-

ology. Now the above 1-1 correspondence takes the uniform

convergence topology on J onto the norm topology on 7

that we have defined previously; hence, a has a denumerable

basis in that topology, and so also a denumerable dense

subset. This completes the proof of Proposition 35.5.

,Let a be 1 or a1, v its linear span. We remark that

from the compactness of n' and from the fact that g(x) =

o(Ex) for all g E w, it follows that the sup in the defini-

tion of 11gU is attained, so that we may write

IIgjI = maxXxC Ig(x)I/(1 + Ex).

Let 1o be the space of all functions u on 0 X I that

satisfy (31.1) and (31.2), and such that u(., s) is non-

decreasing and continuous on a and vanishes at 0. Let

U1 be the space of all u E 140 satisfying (31.3), and such

that u(., s) is increasing for each fixed s. Note that

if u E 1i then u(., s) e ji' where i - 0 or 1.

Let u c 2.o. For s e I, we write us for the function

on n whose value at x is u(x, s). For 6 > 0, a 6-approxima-

tion to u is defined to be a member a of Uo such that
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s- Us < 6 for all s except possibly a set of p-measure

at most 6, in which

s W(x) - 4x

PROPOSITION 35.6. For every 6 > 0 and
u E I., there is a Q c 7, that is a 6-

approximation to u and is of finite type.*

Proof. Let fl, f22, ... ] be a denumerable dense

subset of a, (Proposition 35.5). Let 6 > 0 be given.

For each s in I, u e a,; let i(s) be the first i such that

Bus - f(s)i g 6.

It may be seen that i is Borel measurable. For each k,
k

define u k Fl by

S" (sx), if i(s) < k,
uk -)

SI
4X-1j otherwise.

*See tion 31.

i
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Let

~ s 8 = s : (s )- }

Clearly, U S I, and hence for k sufficiently large,

• =L FP (I\Uk. Si) 6:5;

for such k. uk is a 6-approximation to, u of finite type.

This completes the proof of Proposition 35.6.

lij
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36. FURTHER PREPARATIONS

In this section we shall introduce some notation and

quote some results from [A-P]* that will be used through-

out the sequel. The most important ,of these results give

sufficient conditions for the attainability of the max in

expressions of the form (30.1), and necessary and suffi--

cient conditions for a specific measurable x actually to

attain this max.

Let u be a Borel-measurable function on n x I. If

x is a p-integrable function from I to o, we will abuse

our notation by writing u(x) for the function on I whose

value at s is u(x(s), s). For all a e o and S E C, write

uS(a) = max (j',u(X) : Jsx = a, x(s) E a for all s).

We shall say that uS(a) is. attained at x if x is an in-

tegrable function from I to " such that jSx - a and

fsu(X) - Us(a).

PROPOSITION 36.1. -Let u E uo. Then for

all S and, a, uS(a) -exists, i.e., the max is

attained and is finite.

S*n citing these results, the more general hypothesis
of -upper-semicontinuity in [A-P] has been replaced by the
present assumption of continuity.

Ii
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This is essentially the main theorem of [A-P]. Note

that

v(S) u Us(S ).

Next, we explain the concept of concavification.

Let f be a nonnegative reabl-value'd functifn-on on,.and- let

F [(v, x) E E X 0: :0 < v< f"(x)3.

LetF*, be the convex hull of F. If there is a function f*

on a such that

F ((v, x) e E x a : 0 < v I f*(x)),

then f is said to be spannable, and f* is called the con-

cavication* of f; clearly f* is unique and concave. If

f is concave, then f is spannable and f* - f.

PROPOSITION 36..2. If f c ao? then f is

spannable and f* is nondecreasing and con-

tinuous.

*In this paper the word "concavification" applies
only to spannable functions. This coincides with the usage
of [A-P]; it differs slightly from that of [S-Sl] where

concavification is defined in terms of the closure of the
convex hull.
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This is essentially Proposition 3.1 of [A-P].

If u e 1k then use 3 for all s, and so u* is

defined. Define a function u* on j x I by

u*(x, s) - us*(x).

Then u* - u *, and so we will henceforth write u* for
s s

their joint value.

PROPOSITION'36.3. Let u E O. Then

u* C (o., and for all S and a,

u*s(a) us (a).

In particular, it follows that us is concave

on o.

This is an immediate consequence -of [A-P], :spec-

ificaltly of Lemma 3.•3 aid 3.5 and Propositions 3.1 and'

4.1 Of that paper. From the concavity of -u and u* - u5

if follows that u*S r us*; so we will henceforth write

u* for their joint value.
s



PROPOSITION 36.4. Let "u C 10, let a E -

be : 0, let, S 9 e 0andflet ,x be a measurable

function from I to a. Then, a necessary and

sufficient ,condition for us(a) to be attained

at X," i.e., for

Jsu(x) - us(a) ind S£" a,

is that there be a p e i such that

u(x, s) - u(x(s), s) < p. (x - x(s))

for all x e o and almost all s e S. If u

is increasing for each fixed s, then p e a

(i.e., p g 0) may be replaced by p > 0.

If u 6 ii, then for i - i, ... ,

pi i •S
p -[au/ax 'xI~-x(s)

for almost all s such that *x i(s) >0

This is essentially Proposition 5.1 of [A-P,]J

We close this section with a statement of the Measur-

able Choice Theorem.

S.. . . .. . • 1 • -:• . . .. . . . . . . . . . . . . J .
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PROPOSITION 36.5. Let (X, z) be a stan-

dard measurable space, i.e., one that is iso-

morphic to ([0, 1], a). Let 4 be a subset of

I X X that is measurable in the product a-field

C, x z, and whose projection on I is I. Then

there is a measurable function g : I - X such

that for almost all s, (g(s), s) e A.

This theorem is due to von Neumann [VN, p. 4489

Lemma 5]. Von Neumann's proof uses Assumption 2.1, namely

that (I, 0) is also standard, but the theorem remains

true without this assumption; see [A6].
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37. BASIC PROPERTIES OF 6-APPROXIMATIONS

The main goal of this section is Lemma 37.8, in which

it is shown that for given u, there is a fixed integrable

function Z that bounds all coordinates of all functions

that maximize Us (b), whenever S is not too small, b is bounded

away from 0 and a, and Ut is a sufficiently good 6-approximation

to u. The existence of such a fixed Z is important in, among

other things, compactness arguments in many places in the

sequel. One example of such a use is in Proposition 37.13,

in which the continuity of uS on n is established (the dif-

ficulty, of course, occurs on 'the boundary of 0).

LEMMA 37. 1. Let u e 14 For each

6 > 0 let Z f6 be an integrable function with

Z6(s) 1 1 for each s, such that

u(x, s) < 6 E x

and

W77 < 6 Z X

whenever Ex Z Z8(s)" Then if AU is a 8-approx-

imation to u, then

u (x, s) < 36 Z x

whenever Ex I •6(s).

Proof. We have Ui(x, s) -q or

Iti(x, s) - u(x, s)l • 6(1 + Ex).
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In the first case there is nothing to prove, and in the

second case, if Ex i 46(s), then by using 2 6 (s) j I we

obtain

C(x, s) < 6(1 + Ex) + u(x, s) < 26Ex + 6bx E 36xx.

This completes the proof of Lemma 37.1.

For each f E MO and x e a. let

P(x; f) - (p E a : f(y) - f(x) < p'(y - x) for all y E n).

Let C(x; f) be the infimum* value that; any coordirate of

any point in P(x; f) can achieve; more precisely,

S(x; f) -mini inf (p : P1 P(x; f)).

If x is an interior point of a and f is' concave and

differentiable, then P - P(x; f) contains precisely one

point, namely the gradient f'(x); in that case ý = g(x; f)

is simply the smallest partiial derivative f i(x). If f is

*As usual,, the, inf imum .of the empty set. is taken to

be +-; _t•hus if P(k; f) # 'then •(x; f) - +m.
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differentiable but not concave, then P can contain at most

a single point (namely the gradient), but may also be empty.

If it is concave but not necessarily differentiable, then

P is non-empty, and consists of the normal vectors to hyper-

planes that support the subgraph* of f at the point (x, f(x)).

This, in fact, is the general characterization of P, also

when f need be neither differentiable nor concave, and when

x may be on the boundary of a.

LEMMA 37.2. Let u e 10 be increasing for

each fixed s. Then for each e > 0 and each real

a there is a 6 > 0 such that if f e 10 is a

6--approximation to u, S E C, is such that

p(S) Z :, and x is an integrable function from

I tOq;, such that

s(Z(s); ^s) < 6

for all s e S, then

he s o> a.

*The set of all points underneath or on the graph.
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Proof. First we prove:

(37.3) If C is a compact subset of i, then for

each s there is a 6 w 6(C, s) > 0 such

that ý(x; f) 6 6 for all x e C and all

f r ao such that 1f - Usl g< 6.

Indeed, if not, let (xI, x2, ... ) be a sequence in C, and

[fl' f2' ..." a sequence in a, such that I1fk - uj - 0.

and ý(xk; fk) - 0. Let x0 be a limit point of [Xkl,

w.l.o.g, a limit. Further, assume w.l.o.g. that 6(xk; fk)

is "assumed at pl" for all j, i.e. that

inf [pl e P(xk; fk) = S(Xk; fk).

It follows that for k = 1, 2, ... , there is a Pk E P(xk; fk)
such that pk < (X; then Pk 0, and

k kx; fk + 1k; the

-fk (-y) - fk(xk) < Pk"(y - Xk)

for all y e a. Now for k - 0, 1, 2, ... set Yk Xk +

(1, , .... , :0). Since Yk e as we have
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1

(37.4) k(Yk) fk(xk) < Pk* ( - Xk) = k

Now

U(yk s) - fk(Yk) (1 + Eyk)iifk - Usij

and

fk(xk) - u(xk, s) < (1 + Zxk)llfk - usjj•

Hence

u(yk, S) - u(xk, s) < [fk(Yk)- fk(xk)]

+ [(1 + Zyk) + (1 + EXk)] fk - usl.

Since C is bounded and xk E C, it follows that 1 + Exk is

bounded; hence also 1 + tYk -- 2 + Exk is- bounded. Since

Ilfk - Us11 - 0 by assumption, the second term of the right

side of this inequality approaches 0. The first term is

nonnegative because f is nondecreasing, and so-by (37.4),

it approaches 0 as well. Hence the left side tends to 0,
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and from the continuity of u it follows that u(yo, s) -

u(x 0o, s) g 0, contradicting the fact that us is increas-

ing. This contradiction establishes (37.3).

Let us now set

(37.5) y - y(s, 6 ) - inf(rx:(zfea%)(If-usjI g 6 and C(x;f) < 6)].

Clearly y is non-decreasing as 6 decreases. Suppose y is

bounded as 6 - 0, say y < y0 (-i yo(s)). Then in the compact

set

C = [x E 0 : Ex < Y0},

9(x; f) comes arbitrarily close to 0 for f arbitrarily

close in norm to us, contradicting (37.3). Hence .for

each s,

(37.6) y(s, 6) w as 6 - 0.



If the lemma is false, then for each k there is. a

set Sk of measure > E, a - -approximation. C to u, and an

integrable function xk such that

t(XSk( ); )L < k1

for S E S' and

kk

• _• S k

Then :I!4 - us11 1/k, for all s except fo5r s in a set Vk,

where l.±(Vk) • 1/k. From (37.5) it then follows that for

s e 'Sk\Vk, ,we'-have-%xk•s) y(s, i/k), and so from (37.6)

we' deduce that for such s,,

Now define I-1: b

Exk(,) if s 6 Sk\V4

Sk. - otherwise,.
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Then, for :each, s : k(s) ,as - -. Hence from

Estheor it follows that - * as k
1

uniformly for s in a subset U of I of measure 1 - y; thus

for s E ,U we have g((s) a yk say. In particular, it

follows that for s E (Sk n U)\Vk, we have

k ~'

P~(s) -Z Yk""

From- this and (37.7) we set

a>zf •-k E k 4 - ->Ek '

Sk Sk : (SknU)\Vk

an absurdity. This completes the proof of Lemma 37.2.

LEMMA 37.8. Let u e 0 be increasing for

each fixed s. Then for each E > 0 and each

a > 0 there is a 6 > 0 and an integrable func-

tion vSuch that if S e a is such that p(S) t E,

b in' a satisfies Eb <a, Ci E is a 6-approx-

imation to u, and B S(b) is attained at •, then

I(s) amtls S

for almost all s e S.
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Proof. Lemma 37.2 yields a 6--which we call 61 to

distinguish it from the 6 of this lemma-that obeys the

conclusions of that lemma. Let 6 - 61/3n. Because of

Lemma 37.1, there is an integrable function Z such that

u C(z, s) < 36Ez whenever Ez Z n(s) and CI is a 6-approximation

to u. We will prove that this 6 and Z, satisfy Lemma 37.8.

Suppose that they do not. Then there is an S with

Ii(S) > e, a 6-approximation Ci to u, a j with 1 < j < n,

a b in ol with ,zb < a, and a subset U of S of positive

measure such that

(s),( > ) r(s)

for all s e U. W.l.o.g. we may assume that -(s)

max (s for all s in U. Now for fixed but arbitrary

s in U, let x be the vector whose jth coordinate vanishes

and all of whose other coordinates are equal to the cor-

responding coordinates of i(So). Let p be the price

vector corresponding to ^ and S in accordance with Prop-

osition 36.4. Then

-Ci-(so), 'o) < ft(x, sO) - t(j(sO),, SO) < p.(x -

PJ (x:_- pJJ( 8 )) -PJSJ( -0II II
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But since EI(sO) > •J(s 0 ) > O(sO), it follows that

((So), So) < 36 E ^'(so) < 3n6 maxi (5 6 (

hence pJZJ(s 0 ) < 61 J-(s 0 ), and therefore pJ < 6 But we

have chosen p so that p E P(Q(s); ^ s) for all s E S.

Hence for s E S, we have

SQ(s); Cs) < pJ < 61.

Furthermore, since . - 61/3n < 61 and U^ is a 6-approxima-

tion to u, .it is a fortiori a 61 -approximation. Since

(S) _> e, it follows from Lemma 37.2 that a-IS > a > Eb,

contradicting JSS - b. This proves Lemma 37.8.

LEMMA 37.9. Let u e 10. Then for any e,

there is a .t-integrable real function C, such

that for all s in I and all x in a,

u(x, s) < 6( Q(s) + tx).

Proof. Let ý be an integrable real function such that

u(y, s) <E Ey whenever Ey , i(s); such a £ exists because

-F_______________________________
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(35..1) mnust hold integrably in s. Then because us is non-

decreasing, we thave

u(x• s) < u(x +e, s) < 6( (s) + Ex),

as was to be proved.,

COROLLARY 37...10. Let t• e . Then if

x, is intvgrable, so is u(x).

PROPOSITION 37.11. Let u E 74o Then for

each e > 0, there is a 6 > 0, such that if

C E is___sa 6-approximation to u, then for

all S e C, and all b e n we have

1us(b) - Ls (b)I < E(l + Eb).

Proof. Let uI(x, s) - rE-x-. Apply Lemma 37.9 using

C instead of e, both to u and to uI, obtaining functions

and •i with

u(x, s) < i(ý() + Ex)

ul(x, s) < ( 4(s) + Ex).

i i I.-
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Next, choose 6 sufficiently small so that + c1) . 1

whenever g(U) < 6, and also so that 6 < Letting U be

the exceptional set in the definition of 6-approximation,

we obtain for any x,

S I•u() - (X)l s -•( + Ex) + U (u(X) + ul(x))

+ Ex) + +'C) + t~
U U

< f_(+ + +fx) + + jxl) = e(l + 4).

Now let us(b) and ^s(b) be achieved atZ and • respec-
• US

tively. Then b = - JSz , and we have

us(b) SsU) >-. sU(,) - SsQ) + Js(u(Q) -

JsC(Q - 'slu() - ^(I-[ -J'gsQl- -,E- + Esj-

- %S(b) - e(1 + Eb).

Hence Cus(b) - us(b) I e(l + Eb). Similarly
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s(b) =J'^Q) > s0 Q) " fsu(Q) + fs(a(y) - uQ))

Z SsuQ) . E(1 + EjSZ) u (b) e (1 + zib),

and so

u s(b) - 0 (b) E e(l + £1b).

This completes the proof of Proposition 37.11.

We close this section with a proposition (Proposition

37.13) which, though not directly connected with the con-

cept of 6-approximation, is a consequence of Lemma 37.8.

First we require another lemma.

LEMMA 37.12. Let f E a0 be increasing.

Then the concavification f* of f is also

increasing.

Proof. Let x E t. Since f is spannable (Proposition

36.2), there exist points x1, .... , xk in •, and positive

numbers a1, I ak summing to 1, such that

i-k 'ixi x
i=lii

__________________________________________________________ ______________________
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and

k a f(x f* (x)

if y > x, then 'there is a z > 0 such that y x + z. We

then have

k
E kIZa(xi + Z) - x + z - y

and so by the concavity of f* and the fact that f is in-

creasing, we get'

f*(y) E k aif*(xi + z) Z Eik aif(x + z) > E aif(xi)

= f*(x).

This completes the proof of Lemma 37,,12.

PROPOSITION 37.13. Let u e 1ube in-

creasing for each s. Then for each S 4 t,

uS is continuous on n.

Proof. Let b E 0; we wish to prove that US is con-

tinuous at b. Let
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L =(i :bi > 0), M (i :bi 0),

and let

L - (a e : ai 0 for all i e M),

d -(a e : a- 0 for all i e L);

thus b E n . Our proof will proceed in two stages: First,

we show that

(37.14) US IQL is continuous at b.

Second, setting

a L - [a e aL : b/2 < a < 2b),

we shall show that

(37.15) for every E there is a 6 such that if

C E 01,cII M < 6, and a (L, then

us (a + c) - us (a) < e.

Together, (37.14) and (37.15) prove the desired continuity

of us at b.



In proving (37.14), we will never "leave" the space

L; therefore we may assume w.l.o.g, that n -=, i.e.

that b > 0. Then (37.14) turns into the assertion that

us is continuous at b. By Proposition 36.3, uS is concave

on o, and since b > 0, it follows that b is in the interior

of •. Since every concave function is continuous in the

interior of its domain of definftion, it follows that US

is continuous at b, and so (37.14) is proved.

Next, we prove (37.15). By Proposition 36.3 and

Lemma 37.12, we may assume w.l.o.g, that u is concave for

each fixed s (otherwise, replace it by its concavifica-

tion u*). Suppose now that (37.15) is false. Then we

can find an e > 0, a sequence 6 0, and sequences [cj3S[ j j Jc
Land (a such that 1c 1< 6j, a. q, and

(37.16) us(aj + cj) - us(aj) E.

Since aj is in L which is compact, it follows that [aj)

Lhas a limit point a in 0b; w.l.o.g, let it be the limit.

Note that since a e 0L, we have ai > 0 for all i E L; hence

applying (37.14) to a instead of b, we get that

A4
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(37.17) uS(aj) us (a)

as j

Now let uS(aj + cj) be attained at j. From Lemma

37.8 it follows that there is an integrable function 11

such that X,(s) r Z(s)e for all j and almost all s. The

space of all integrable functions on S can be considered

as L (S x (1, ... , n)). Since the set of all x in this

space such that 0 < x(s) g I(s)e a.e. is weakly sequentially

compact*, it follows that the sequence [Xn) has a subse-

quence that is weakly convergent, say to Z. Then there

is a sequence of functions converging strongly (i.e..,, in

the L1-norm) to 7, each one of which is a (finite) convex

combination of ZI, 7-2' ""[Dun-S, p. 422,, Corollary

V.3.14]. Now every strongly convergent sequence in L

has a subsequence that converges a.e. to the same limit;

so there is a sequence [z.) of convex combinations of

Zi' Z2J ... that converges a.e. to y. Since Zj(s) I n(s)e

a.e., it follows also that zj(s) I i(s)e a.e. Hence u(zj)

is pointwise < u(ze), which is integrable by Corollary 37.10.

Moreover, from the continuity of u(., s) for each fixed s,

*[Dun-S], p.292, Theorem IV.8.9.
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it follows that u(zj(s), s) uQ(s), s) a.e. as j

Hence the Lefesgue dominated convergence theorem applies,

and we deduce

(37.18) ,SU(U ) Ssu(Z).

Now from the concavity of u for each fixed s and the fact

the the z. are convex combinations of the y,, it follows

that

',j j'sU(j) - mini us(a. + c.).

Hence by (37.18), it follows that

Su(Z) min. u.(aj + C

But if we had chopped off any finite number of terms from

the originally given sequences (a ] and (c j ), this would

not have changed y nor any of the foregoing considerations.

Hence for all k we have

,sU() _ minjuk US(aj + c

mi m
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and letting k w w, ,we deduce

--- Q) g lim inf. a +-c(a

Applying (37.16) .and (37.17), we then deduce

(37.19,) su() > U-) + C.

On the other hand, s-ince-xj - y weakly, we have

fsz lij.'.•Jszj " Uj.- m (aj + cj )a + 1im. c.= a.

Thus by definition- we muist -have Ssu() u uS(a), in con--

tkadiction to (37.19),. This completes the proof of

"-Proposition 37. 13.II
gI

IZI
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38. THE DERIVATIVES OF THE FUNCTION uS

In this section we shall establish the existence and

some continuity properties of the derivatives of the func-

tion uS.

PROPOSITION 38.1. Let u e 1i and S C,.

Then for each j such that I • j - n, the par-

tial derivative uj - aus/bXJ exists at each

point b e n such that bJ > 0.

Proof. Without loss of generality let j 1. Be-

cause of the concavity of uS (Proposition 36.3),

a lim6 .O+(us(b + 6el) - (b))/6

and

13 - lim6. 0 (us(b + 6el) -US(b))/6

both exist, though they may a priori be different; in any

case.we have a , e. If a - • our theorem is proved, so

let us assume a < .

We now show that*

4 (38.2) uS(b + yel) - us(b) ain (ay, Py)

*The, fght side of (38.2) is ay when y > 0 and Py when v < 0.,
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for all y > . Indeed, suppose that

uS(b + ye)I uS(b) > ay

for some y > 0 or

us(b + ye 1) - us(b) > Py

for some y < 0. In the first case we will have

(38.3) uS(b + yel) -,uS(b) = a'y

for some a' > a and some y > 0. Now the left side of

(38.3) is a concave function of y that vanishes for y 0,

and hence.

us(b + 6e 1 ) - us(b) > a'6

for all 6 such that 0 < '6 y. Hence the right hand partial

derivative of u. at b is • a' > a,, contradicting the fact

that it equals a. In the second case a contradiction is

similarly obtained.

r.?



Suppose now that u s(b) is attained at •. Then we

claim that for almost all s e S and all y > -zl(s),

(38.4) u(y(s) + yel, s) -u(Z(s), s) < min (cy, Py).

Indeed, if this is not so, then for each s in a subset U

of positive measure, there is a y(s) such that

u(y(s) + x(s)e1 , s) - u((s), s) > min (aýy(s), Py(s)).

By the measurable choice theorem (Proposition 36.5), we

may assume that Z(s) is measurable, and clearly it may be

chosen integrable. Furthermore, either y(s) > 0 in a set

of positive measure, or •(s) < 0 in a set of positive mea-

sure. In the first case, let V be that set, define

z(s) -7(s) + X(s)eI for s e V, z(s) -=(s) otherwise.

'Setting c = z and y - y, note that JS u(z)Y < Us(c)

and that c - b + ye 1 ; hence

uS(b + yel) -uS(b) uS(c) -- u(b) J S (u(Q) - Q)

uS(u(z) - U(Z) > GLy-

I;
I!

Ar
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contradicting (38.2). In the second case (when y(s) < 0

in a set of positive measure), a contradiction is similarly

obtained, using P instead of a. This establishes (38.4).

I II
Since S v b1 > 0, there must be some set of s of

positive-measure in which y (s) > 0. Now from (38.4) it

follows that for almost all s e S with z (s) > '0, the

right-hand derivative of us w.r.t. x at x = Z(s) is < a,

and the left-hand derivative is ý 1. Since 1 > a, these

'two derivatives are unequal. So u is not differentiable

at yl(s) w.r.t.x*7, contrary to •u E Vi" This proves Proposi-

t-ion 3A8.;

If f is a function differentiable at a point of E ,

we will denote by f' the vector (f n), .., f of its par-

tial derivatives. It. particular,

PROPOSITION U38.5. Let u e 1,, let b E a

be > 0, and let us(b) -be attained, at " Then

for all S e d,. all j = 1, ... , n, and almost

•all s c ' we have uJ,(b) = u3 (Y(s), -s) when

(s) > 0. Fur.thermore, for all x- o • and

almost all s E S we have



u(x, s) - u((s), s) < u(b). (x -Z(s)).

Proof. By Proposition 36.4, there is a vector p > 0

such that

(38.6) u(x, s) - u(Z(s), s) < p.(x - Z(s))

for all x E a and almost all s in S; furthermore, pJ -

uQ,(s)) for almost all s for which 'J(s) > 0.

Now for an arbitrary y a -bj, let u s(b + ye.) be

attained at z. Then by (38.6), a.e.

u(z(s), s) - u(Y(s), s) 1 p. (z(s) - 7(s)).

Integrating this inequality over S, we obtain

uS(b + yej) - uS(b) I p.(b + yeo - b) = yp

By Proposition 38.1, the partial derivative ui exists.

Letting y -. 0+, we deduce u (b) p J; letting y - 0-, we

deduc Us(b) p Hence u us(b) - and Proposition 38.5

is proved.

[
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The next proposition asserts that the gradient uj(b)

is continuous in 1b, and that this continuity has certain

uniformity properties, both in b and in S.

For e > 0 and a > 0, we denote

A(e, a) - [x e n : x ce and Ex g a).

PROPOSITION 38.7. Let u e 2i. Then for

every e > 0 and every a > 0 there is a 6 > 0

such that for all S with v(S) e and all b

and c in A(e, a) with lib - cjl • 6, we have

Ilu (b) - u (c)ll <e.

Outline of Proof. It is not difficult to prove that

a function that is concave and possesses all its partial

derivatives at every point in the interior of -0 is neces-

sarily continuously differentiable there (cf. Proposition

39.1). The function uS satisfies these conditions (Prop-

ositions 36.3 and 38.1), and so it is continuously dif-

ferentiable in the interior of n; since A(e, a) is compact,

the continuity must be uniform w.r.t. b in A(e, a). 'Un-

fortunately, this line of argpment Will not yield the uni-

formity of the continuity w.r.t. S, which is essential for

the applications in Section 40. We must therefore use a

different attack.



105.!!

Let b and c in A(e, a) be close to each other and let

us(b) and us(c) be attained at x and z respectively.* Let

Z(s) - (uj(c) - uS(b)).Q(s) - (s)

from Proposition 38.5 it follows that • is nonnegative.

Since

h - (u( (c) - u; (b)). (b -c)

it follows that jX is small. But since T is nonnegative,

it follows that ,(s) itself is usually** small.

Suppose now that the conclusion of the proposition is

false, i.e., that for some j, uJ(b) and UJ(O) are not close;

say ug(b) is considerably larger than u§(c)-. Since f(s)

is usually small, it follows that jJ(s) is usually close

to Z(). Furthermore, from Lemma 37.8 we know that

and zj are bounded by some Z, so they cannot usually vanish;

it follows that there must be some s for which zj(s) is not

close to 0, and moreover, .z(s) and zJ(s) are close. If

*If t could be shown that for some s, 1(s) and z-(s)
are close to each other and neither almost vanishes, Then
our result would follow from the continuous differentiability
of u(., s) and Proposition 38.5. But this is not necessarily
true.

**I.e., for all s except for a set :of small measure.

Ke
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we now proceed in the positive xJ-direction from zJ(s),

then near z(s), u will be rising at a rate given approx-

imately* by

S3u(x, s)Ix.Z(S);

by Proposition 38.5, this is equal to uJ'(c). On the other

hand, if k is a coordinate for which X(s) differs con-

siderably** from zk(s), then since T(s) is small, uk(b)

must be close to US(c). Therefore along the line connect-

ing z(s) with X(s), the hyperplanes Hb and Hc given respec-

tively by

u - u(,X(s), s) + us(b)(x -

and

u - u((s), s) + uA(c)(X - Li
must be almost parallel. But these hyperplanes support

the graph of u(., s) (Proposition 38.5) and pass through

it at the points corresponding to X(s)-and z(s) respectively.

*Because u(., s) is continuously differentiable.

**If there is such a coordinate If not, the y(s)
is close to z(s), and so in the argument below, Hb auto-
matically passes close to the graph of u(", s-)at z(s).
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Therefore Hb and Hc almost coincide along the line from

X(s) to z(s), and in particular, Rb passes close to the

graph of u(., s) at z(s). But since Hb supports the graph

of u(., s), it then follows that the rate of rise of u in

the positive xJ-direction from z(s) cannot be much greater

than uJ(b), at least if we average over a large enough

xi-interval. But this is in contradiction to the fact that

this rate is approximately us(c), as shown above.

Proof of Proposition 38.7. Let Z correspond to e

and a in accordance with Lemma 37.8, let b and c be in

A(e, a), and let uS(b) and uS(c) be attained at v and z

respectively. We first wish to prove that there is a number

•, depending on u, e, and a only (and not on the choices

of S,, b or c), such that

(38.8) EuS (b) • P and uS (c) < P.

Indeed,, setting x - 0 in Proposition 38.5, we obtain

uS(b)-X(s) j u•y(s), s) g uQ(s)e, s).

I•
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Integrating over S, we obtain

ui(b).SZ < Ssu(.ne) < fu(Ie).

Since b C A((, a), we have b a ce; therefore

au'(b) - u'(b)'Ce < u'(b).b - u'(b)'SSZ I ,u(Ze).Su b)-u S uS.

Thus Eu•(b) fu(ne)/E, and similarly EuS(c) ,u(Qne)/E.

Setting 0 -- u(.e)/e, we deduce (38.8).

In the remainder of the proof, let j be a fixed ifidex.

We next claim that there is a number 61 > 0 (depending on

u, C, a, and j), such that

E ()>6)>6, andI

(89 6 S z (s) > 61] •

II
Indeed, for a fixed 61, le ,-[ eS y(s)>6).i

4(U) i< 6, then

I
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Since T is integrable, it follows that the right side of

this inequality will be < e if 61 is chosen sufficiently

small; but this contradicts e < b0 - ISzJ. The same

reasoning applies to z. This proves (38.9).

Because uJ*(x, s) is continuous in. x for each fixed s

whenever xi > 0, it is, for each fixed s, uniformly con-

tinuous in the set

C(s) ( (x 6 : x _> 61, x < 9(s)ej.

So for each fixed s we may find a number 62 (s) > 0 such

that

IuJ(y, s) - uJ(z, S) </3

whenever lly - zI1 6 A2(s) and y, z e C(s). Furthermore,
it may be shown that 62 may be chosen measurable, and we

may assume w.l.o.g. that

I Z2() 1AI a
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for all s. Since 62 is measurable and bounded, it is

integrable. Since it is always positive, it follows that

if we define i

63= inf (fU62 :P(U) >6 1 /2),

then

03 .

Finally, choose 6 so that

6< C63 /3nP.

.Let

"Y (s) (u-(c) - u(b)).Q(s) z(s)).

From Proposition 38.,5 it follows that for s-e. S,

u (b)Q.(s) - ,s)()) < u(y(s), s) - u(z(s), s)

. ..< U(c).-Q(s) -z(s));

-. S-
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hence

(38.10) 0(s) 0.

Hence by the definition of

(38.) 0 < SS = (u' (c) - u' (b)) - z)

(u. (c) - u'(b)).(b - c) < IluS(c) - u,(b)llnilb - cii

<n6 < E6 3 /3 < E63/

Setting

W (s ES: S y(s) > e2(s)/2),

we obtain

(38.12) M < 112;

for if (TW) 6 1/2, then because y is nonnegative ((38.10)),

ff.i 'W" > •i ~2 > C3/2:
cni 3

contradicting -(38. 11).
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Suppose now that the proposition is false, i.e. that

Ju~(b) -u
3j(C')J S c

-for some J, -w-.l.o.g. the one We have fixed. Assume first

that (c) - b) > e. From (38.12) and' (38.-9) it follows
S3

Cwthat there must be an s in S such that zJ(s)- > 6, and s I W,

SChoose such an-s. Since s i W, we deduce that y(.s) <

E•2 (s)/2. Set y T' y(s), 62 W 6-(s), y Z(s), z 7 Z(s),

w = z + I)ew - z + 2e. Then Then

(Uu(C) - u(b)) (y w) y - (UJ,(C) - '2 762 •2.

Hence

-- (b) y- , < (q c)'(w - y). IS "Is-
Hence by Proposition 384.5,

52

u(w, s)',- u(y,, s) <u (b)(w - y) = u•(b)(w + -e, y)

23 2
u ).w ( -(W y) + u< u(c)(w y) + u (b) .Zi? = S •
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On the other hand, for an appropriate e 6 0,1 1],

u'(w ,S) -u(y, S) (044- S) -u(Z, s)) M uY, S) -u(z, s))

=Ui (z + e 6 e~~56 uy )-u. )

1(u (z, S) 2 )6.u'(c).(yz),

I) (
because of the definition of 62 62(s) and Proposition

38.5. Agaii-musing Proposition 38.5 and zi -i z(S) > 0,

we -deduce th7,t

u(w# , 's) -u(y, S) 3 u(d) 6 36 -Uý(c).(y-:z)

6 E
-u (c) Z 2 + uS(c).(w - )

4 Cambining the two ianequalitlies for u(w ,s) -u(y, s), We

A deduce that

Al Hence
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6 2 6 62 6
62 > (uý(c) - ,2b) > .

Hence 2 > 3, an -absurdity. The case uý,(b) - u'(c) > - is

handled sibilarly.. This, compIetes the proof of Proposition

38.7).

COROLLARY 38.13. Let u E 1i. Then for

all j = '1, ...- ,n and all S E C, u" is continuous

at, each b-ih i with-,b > O.

PROPOSITION 38.14. Let u-e t€*! Then for

every : > 0 and -every a > 0 there is a 6 > 0

such that for all S with ýI(S) > E, all b in

A(E, a), and all 6-approximations a to u,

we have

]I )- u (b)II < E.

Proof,. -Fix j. Let E = and let 6, correspond

tol-E and aý + cl in accordance with Proposition 38.7;

furthermore, choose 61 <I E Let 6. correspond to

•i•/'6 c 1+ 61 +-d) in accordance with. Proposition 37.11.

Then 'since Q is a Z-approxiniatiori to u, we have

Q

a - -•
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IOs(b) - uS(b)j < 6le/4

and

+Q(b + 61 e.) - us(b + 61ej)I < 6 lE/4.

Hence

as(b + 61e - s(b) us(b + 6,e.) -u (b)

Similarly

fOb) '-s(b-6 1 e.) us(b) - Us(b- l1e-)

But because of theý concavity of S (Proposition 36.3), we

have

d I(b)- s(bb+ 6 1ej) ts5b)

Thus, again becp.use i.Pf -the concavity,
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&(b) Us(b) + 6.e. - Us(b)

Sb 6 1 (b)

j C

> (b + 6 ) -6

> u (b) - -- = . (b) -

Similarly &(b) < u (b) + E. This completes the proof of
S S

Proposition 38. 14.

[, t

I

i --
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39. THE FINITE TYPE CASE

In this sectioin we shall prove* Proposition 31.5.

PROPOSITION 39.1. Let-f be a continuous

concave, function defined on 0, and for some j

with 1 <j n, assume that f0 = af/axJ exists

at each- -x e. 0 such that xi > 0. Then f0 is

continuous at each point x such that xi,> 0.

Proof. Without loss of generality let j 1- 1. Suppose

fl is. not continuous, say at y, where y > 0. Let xk - y,

f (xk) -. , a' " f (y) (possibly a = f-). Without loss ofgenerality let xk > y1 2 for all k. Then for all y > -y /2S

we have

(39-.2) f(xk + yel) - f(xk) ;g f (xkk)y.

If-a 's finite, let k • and obtain from the continuity

of f that-

1I 1f (y +Y)j f '(y) a

for all y > -yi/-2 . Hence, because f (y) exists it must be

equal to a,, a contradiction. If d =, ' let y T y 4;, then

*VeVy few of the "tools developed in Sections 35, 37,
and 38 will be used in the process, and sometimes only spe,-
dia]l cases--which- coul'd have been established more easily
than the -general cases-ý -will be ,used. All in all,, wheat is
needed from- those sections for the finite type ca-se could
have been develbped separately in a few)ýages. We -did not
do this because we v[ished to avoid-an unnecessary duplica-
tickh, and -because we consider the finite type case t. be
cierkly a stepping stone to the general one.
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(39.7)- y-.elds f(xk + yet) - f(xk) -- , whereas continuity

implies that it tends to f(y + yel) - f(y). This contra-

diction proves Proposition 39.1.

PROPOSITION 40.3. Let f E 10' and let u -40
be defined by u = f for all s E I. Then for

all a c • we have

u (a) = f*(a),

where fP is •the concavification* of f.

Proof. Assume first that a > 0 and that f is concave.

Let

"G = {(v, x) e E x Q : v < f(x)].

Then G is concave, and (f(a), a) is on the boundary of G.

,So there is a hyperplane containing (f(a), a-) that supports

G, i.e., there is a q e E n and a P e E1 such that (P, q)# 0

and

"*See Section 36, in particular Proposition 36.2.
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(39.4) Pv - q.x < P.f(a) - q.a

for all (v, x) E G. If for any j, we would have qJ < 0,

then by setting v = 0 and letting xJ be large and x = 0

for i 0 j, we would get a contradiction to (39.4). Hence,

q e il. If P < 0. then by fixing x and letting v be a

negative number with large absolute value, we again get

a contradiction to (39.4). If P = 0 then by (p, q) # 0

and q E c wc get q > 0; hence since a > 0, we get q-a > 0.

But if we seL v = 0 and x = 0 in (39.4), we get-O < -q-a,

which is again a contradiction. We conclude that P > 0,

which permits us to divide (39.4) by P and obtain a

p E L such that v - p-x < f(a) - p.a for all (v, x) E G.

If in particular we set v = f(x) and recall that u(x, s) =

f(x) for all s, we deduce that

u(x, s) - u(a, s) < q • (x -a).

Hence by Proposition 36.4, ui(a) is attained at x =- a.

Since f is concave, f* = f, and so the proposition is

proved in this case.

When f is concave but a is not necessarily > 0, then
nf

we apply the case just proved to the subspace of En obtained

- l B ]o | il Fl t lHHB VI l i- a ~ e -ma
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S~~by considering, on~y those-.coordinates: j= for .wh-iuh -a is-

positive, and obtain the desired result.

When f is not necessarily concave, then we apply

Proposition 36.3, and deduce from the concave case just

proved that

u1 (a) = u*1 (a) m f*(a).

This completes the proof of Proposition 39.3.

LEMMA 39.5. Let f • •i" Then the con-

cavification f* is also in "

Proof. Define u e t<I by u(x, s) = f(x) for all s E S.

By Proposition 36.3, u for all s e S, and hence

f* 6 •0" To prove that f* obeys the differentiability

condi~tion (35.2), note that by Proposition 39.3 lX

f*(x) for all x 6 Lb Hence by Proposition 38.1, f*J(x)

exists whenever xj > 0. Since f* is continuous and con-

cave, it follows from Proposition 39.1 that f*J is con-

tinuous at each x E L• for which xj > 0, and so (35.2) is

verified. Finally, the fact that f* is increasing follows



COROLLARY 39.6. If u E 141, then u* E ?4'

"Proof. This is an immediate consequence of Lemma

39.5 and Proposition 36.3.

Let fl' "''' fk be concave members of £I" Denote

the nonnegative orthant of Ek by g. For y E .= and z E

define

k yifxi
(39.7) g(y, z) = max (Ef f (x : xI, ... , xk E

k i
and Eif y xi < z].

If we set w - (y, z), then w c a x 0 c En+k. Thus

g - g(w) is a function of k + n nonnegative real variables.

Note that the inequality sign in the constraint

EkyI xi < z may be replaced by an equality unless

k i n i
Ei-l y ,fi O'< Ejff.l

It is easily seen that the max in the definition of

g is attained. Indeed, if y > 0, then the constraint set

is compact; and if one or more of the coordinates of y

vanish, then we can ignore those coordinates and the cor-

responding xi entirely, and the constraint set for the

remaining xi will still be compact. If all the yi vanish-

i..e., if y 0 0-then, of course, g(y, z) 0, and the max

is achieved for any k-tuple of xi in 0.



LEMMA 39.,'8. Let S ... , Sk be a
partition of I, and define u in U of finite

type by

u x, s) = (x) when s E Si.

For S c I, define yS e A by YS - (S Si)

Then

us5 (z) g(ys, z)

for all z E •.

Proof. Let g(ys, z) be attained at (xI, ... ,

Define x by

x(s) x. for s ES flSi.

Then

f i

and hence

-A



u5 ) 4 W k1X 1i y if (xi) -g(yS, z).

To obtain t*.he oipo§sIte inequality, let u (z) be attained

at x Def ite (*j *.,Xk by

!S,±S if P(s n #i 0

arbitrary, if P(S n s.) =0.

Then by the concavity Qf fi.,

YS i

if --(s n si) # 0. Furthermore

k- =sx k iS)

Hence

k *ikg(-Y5 , Z) ) ii, y~fi(xi) = ( ') Us~
SIS'. 's

This completes the proofý of the le~mita.
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LEMMA 39.9. g is concave, nondecreasing,

and continuous on A x n.

Proof. We first prove the concavity. Indeed, let

(yi', zl) and (Y2 , z 2 ) be in v -x 0, and let g(yl, zl) and

g(y2, z 2 ) be taken on at (xll, ... , xlk and fx 2 1 , ... , x2k
respectively. For 0 _g a g 1, let

(y, z) = a(yl, zl) + (1 -a)(y 2 , z 2 ),

"and for each i define

x i i

f (ay'x1  + (1 - a)y 2 i)/yi, if y > 0
x 0 otherwise.

Then

E :k i " k i ii yfi ill [yylXli + (1 - a)Y2x2i]
a Ek i + (1-) k i

i-1 YlXli )i1 y 2 x2 i

-< Iz + (1- a)z 2

Vm"J = Z.

So if we let L - (i : I < i < k and y > 0], we obtain

from the definition of g and the concavity of the fJ that

___i

- - - = = -_
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g(y, z) k i yifi(x

f1 iffi ieL y[ fi(xli) + fl
i L Y y fi(x2i

= k y~ixi i -u k i
-J i i Il Y2 fi(x2i)

-ag(yl, Zl) + (I- a)g(y 2 , z2 ).

This shows that g is indeed concave.

Next, we show that g is nondecreasing in w = (y, z).

Indeed, suppose w1 > w0 and g(wl) < g(wO). If we draw a

straight ray (half-line) starting at w0 and passing through

Wl, then this ray must always stay in - x 0. On the other

hand, from the concavity of g it follows that at a point

on the ray sufficiently beyond w,, g will be negative.

But it is clear from its definition that g can never be

negative. This demonstrates that g is nondecreasing.

Finally, we prove the continuity of g at each point

W = (yo, zo) of A x 0. Note first that g is homogeneous

of degree 1. Hence we may wholly restrict ourselves to

k i 1
the case in which ti.l Yo < 2" In that case we may find

a partitiun [SI, ... , Ski of I and an S c I such that

i
YO x(s n si).

I.



- __ .. . . . .

If we define u in U as in Lemma 39.8, then from that

lemma it follows that

Us(Z) - g(Y0 , z)

for all z in •. Hence from Proposition 37.13 it follows

that g(y, z) is continuous in z at (y0, z0 ).

To complete the proof of continuity it is sufficient

to demonstrate

(39.10) For every e there is a 6 such that

if I1(y, z) - (y0 , z0)II 1 6, then

Ig(y, z) - g(y0 , z)I < E.

So let E > 0 be given. For each i there is an rj such

that fi(x) < jjxjj whenever ijxti > TI; w.1.o.g. we may

choose the same n for all i. It then follows* that for

all x and i, we have

(39.11) fi(x) < E(n + Ex).

*Compare the proof of Lemma 37.9.
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Now for given (y, z), define 5-e -4 by-9'•i min(y', yO) for

all i. Let g(y, z) be attained at (xI, ... , Xk). Since

5< y, it follows that (xl, ... , xk) satisfies -the con-

straints in the definition of g(^, z). Hence

rkg(Z,, ki,1 fi(xi-

Therefore, using the monotonicity of g and (40.11),

(39.12) g(y, z) - g(, z)

< i = lyfi(xi) -- i fi(x)

-k i i n k i )i
E i,1I(Y -- + l •i-l'E y --

k i ki n k i
S.zi 1 (Y + ) E. 1 li=l yix.

k i i
=En Ei 1 (Y _ ) + C £z.

Now from the definition of 5 it follows that

IlY - Y^11 1< flY -- Y011 -1 1(Y, Z) -- (Y0' z0)II"

hence if in (39.10), 6 is chosen sufficiently small, then

the first term on the right side of (39.12) may be made

less than E, say. As for the second term, if 6 is chosen

I
!_

-- ,I



-128-

less than 1/n, say, then we will have

CE z < c(l + Jz
Thus altogether we obtain

g(y, z) - g(y, z) < -(2 + Ez0).

Since g is monotonic and y 2 9, it follows that g(y, z) -

g(q, z) > 0. Hence

Ig(y, z) -g(^T, z) 5 < -(2 + z

Similarly we obtain

ilg(y 0 , z) -g(5r, z)II < '(2 + zo).

Hence

11g(Y, z) - g(y 0 , z)jg ; :(4 + 2Ezo).

This gives us (39.10) with a factor of E(4 + 2Ez 0 ),
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and (39.10) follows without difficulty. Thus the proof

of continuity is complete, and with it the proof of Lemma

39.9.

PROPOSITION 39.13. For each p with

1 < p I k + n, gP =. g/awp exists and is

continuous at each w e a x n for which wp > 0.

1
Proof. First, we show that g is differentiable in y

whenever yl > 0. Indeed, let yo e 4, z 0 e n, and let

g(y 0 , zo) be taken on at (x0 1, ... , X Ok. Define a func-

tion h of the positive real variable y1 by

1 1 11 i k ih(y y fl(xOlyo/Y ) + Ei. 2 Yofi(Xo4).

Since we wish to fix attention on the variable y

1 1 2 kit is convenient to set g(y ) g(y , yo, ... ,' Yy0, Z0);

in particular, therefore, g1 (y0 ) - g(yo, zo). Now since

1 1 ik iy ,(xoYo/yd) + k Ein i YoXoi Z

if follows from the definitions of g and g, that

p l I
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(39.14) h(yl) 1 gl(y )

1for all y > 0, and of course

(39.15) h(y 0 ) = gl(y0 )"

0i0
Next, note that h is differentiable whenever y > 0;

this follows from the differentiability of f1(xoly0/y )

as a function of y which in turn follows from the fact

that fJ(x) exists whenever xj > 0. Of course it may happen

that some of the coordinates of x01 vanish, but then any
i

change in y does not affect the corresponding coordinates

1 1
of x0 1 y0 /y , so that the differentiability of h is not

affected. In fact, if we let M ( (j e N : xil > 0), then

1 d01

h'(yl) 1 d 1 h(yl)
dyI xj I

= f(xo 1Y0/y 1) + y1 •EM fl(x0 1Y0/Yl(- xy

I 01Y jem 01yo(y I)2

In particular, we obtain

h'(yo1) = fl(xo1) -- ljM Elxf-(X 0 l)"

I
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On the other hand, since g is concave in w, it follows

that g, is concave in y ; hence there is a4 supporting line

to its graph at y0' i.e., there is a linear function 4,(y*L)

such that

I|I

(yl) • gt(y )

for all y > 0, and

_,i t(y ) =gl(y ).

Recalling (39.14) and (39.15), we find that g, is "trapped"
between the two differentiable functions 4 and h at y01

and so must be differentiable. The differentiability of

1at yo is of course the same thing as the existence of

1 at z)oA.similar
the derivative aysimilar argumnt

shows that all the derivatives ag/ yi exist whenever

=y> > 0, for each i in (1, ... , k].

The existence of the partial derivatives ag/azi for

zj > 0 is an easy consequence of Proposition 38.1 and Lemma

39.8.

Combining the existence of the partial derivatives

with the continuity and concavity of g (Lemma 39.9), and

i"
I
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applying Proposition 39.1, we deduce the required con-

tinuity of the derivatives.*

Denote by H the set of all superadditive set-functions

in pNA that are homogeneous of degree 1 (see Part IV).

LEMMA 39.16. If u E 41 and u is of

finite type, then v (as defined in (30.1))

is in H.

Proof. First we show that v e pNA. By Corollary

39.6, we have u* e Ui5 and certainly u* is of finite type

as well. Thus there is a finite set (f1 , "... fk] of con-

cave functions in such that each u* is one of the f

If we now define g by (39.7), then from Lemma 39.8 we

obtain u*(z) - g(Ys' z) for all S c I and z e 0, where

yS is defined by

YS P(s n si)

*The basic idea of this proof, to prove the differenti-
ability of a function by "trapping" it between two dif-
ferentiable functions, was adapted from [S8 ] (see the lemma
on p. 7, and its proof on pp. 8-9 of [$,]).



-133-

and Si is defined by

, s ( s 6 I : us fi)"

Now by Proposition 36.3, u*(z) - uS(z); hence

uS(z) = g(ys, z).

If we write n(S) instead of yS, then we see that , is a

k-dimensional vector of non-atomic measures on I, and we

have

(39.17) Us(z) - g(r(S), z).

Now define an n-dimensional vector • of NA-measures

by

fSa

Substituting C(S) for z in (40.17) and using the definition

of v (30. 1), we obtain

v(S) '- u'(c(s)) - g(n (S), c(S))

-I •
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Letting v - (r, C), we see that v is a vector of nonnegative

measures in NA, and that

(39.18) v = g 0 v.

Since g is continuous and nondecreasing (Lemma 39.9), and

since for all i, ag/ wi exists and is continuous whenever

wi > 0, it follows from Proposition 9.17 that g . v, and

hence v, is in pNA.

To show that v is homogeneous of degree 1, use the

Weierstrass approximation theorem in k + n dimensions to

find a sequence [h.] of polynomials (in k + n variables)

such that

Ihj(w) - g(w) ý l1/j

for all w in the range of v. For these polynomials it

follows from the defining properties of the extension

operator (in particular (21.1), (21.2), and (21.3)) that

(h o v)*(aXS) - h (av\(S))

where the * denotes the extension (see Part III). Letting
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j • and using the continuity of the extension operator

in the supremum norm (22.9), we deduce that

v*(ayX) = (g o v)*(aXs) = g(av(S)).

But since it is easily verified, that .g is homogeneous of

degree 1, it follows that

g(av(S)) = ag(v(S)) = av(S).

Hence v*(ax() = av(S), and so v is homogeneous of degree 1.

We have demonstrated that v E pNA and that it is homo-

geneous of degree 1. Since its superadditivity is obvious,

the proof of Lemma 39.16 is complete.

We are now ready for the

Proof of Proposition 31.5. This follows immediately

from Lemma 39.16 and Theorem F.
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40. PROOF OF THEOREM G

The proof will proceed by reducing the general case

to the finite type' case. In, the process, we shall also

. prove Proposi.tion 33.2.

LEMMA 40.1. Let u e 74, anda be given,

where, a is p-integrable; Then for every c > 0

there is a 6 > 0 such that if m ia .a positive

integer, u C U<is a 6 -approximation tO u, and

S1 C ... c S C S+

is a sequence such that fSla I ce and

U(sk+l\Sk) < 6 for-.all Ik, then

(40.2) Zk.ltv(Sk+l) - i(Sk+l) - (v(Sk) -(Sk) < C,

where' v and V^ are defined by

(40'.3) v(S) - uS(f 5 .s) andvS -=uS•) for all S.

_roof_. Set Ak - v(Sk+l) - r(Sk+l) - (v(Sk) - r(Sk)).

We start out by fixing attention on a single Ik. To simplify

the notation by eliminating the need for a large number of

subscripts, set Sk+I - Su 5 US w - W,. a - b, and let
w eS sk+e7-. v(S) =w(b) be attained at ."Similarly,, set Sk Sot

-- k
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USk 1ow Sa J bo, and let v(S W (b be attained

at zo" Adopt a similar notation for VC, Oi, etc. Also

set V'= S\So.

For 0 < 8 <I, set

g(e) = wo(Of y + (1 - e)b ).

S

The function g is continuous on the closed unit interval

[0,1], and is differentiable in the interior (0,1). The

continuity follows from Proposition 37.13; to prove the

differentiability, let

c = y + (1 - e)bo.

0

Then since b 0 fa> 0, it follows that c > 0 for all

E e (0,1). Applying Corollary 38.13, we deduce that wJ(x)

exists and is continuous at x = c for each j and each o

in (0,I). We conclude that g'(u) exists for all e c. (0,1),

and

g'(0) = w'(cO)',

where a e En is defined by
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- 'z -v• b [j'•-,

a a

S V S V

V

Since g is continuous on [0,1] and differentiable in

(0,1), the mean value theorem applies, and we deduce that

g(l) - g(0) -g (0) for an appropriate e. Setting c c0

for that e, we obtain

(40.4) w O( s) - wo(b)

0

Now w(b) is attained at Z; hence by Proposition 38.5,

(40.5) u(x, s) - uQ(s), s) < w'(b)'(x - Z(s))

for almost all s E S and almost all x E n; in particular

this is true for almost all s E So. Since trivially we

have 55 Y J'S Z' it follows from Proposition 36.4 that

W(f0 ( ) is attained at ZIS that is, we have
0

(40.6) w ( ) = u(y).0 S S
0 0
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By applying Proposition 38.5 to S0 we obtain

u(x, s) - u(Y(s), s) g w'(f Y).(x - Y(s))
S

0

whenever s E S0 and JS > 0. From this and (40.5) it
0

follows easily that if fS Z > 0, then
0

(40.7) w(b) = wo,(f Z)

0

(since for each j there must be an s in S0 with J(-s) > 0).

Formula (40.7) is needed for later reference; at the moment

we need only (40.6), which, together with (40.4) yields

w0 (b0 ) = - Wo,(C)' + f u(Q).
So

Since w(b) = fsU(y) by definition, it follows that

(40.8) w(b) -w (bo) " S uQ) + w'(c)'a.
V

If we go through the above argument for a, defining ^ and

A in the appropriate fashion, i.e., by setting
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+1
S 0

0

for an appropriate c E [0,1] and

a = j' (- 2),I

then it follows that

^(b) -o(b) - fi) + Jo4.
V

We note also that

(40.10) u(^(s), s) - W'^(b).Z(s) < £(i(s), s) - @'(b)'t(s)

for all s E S; this follows from Proposition 38.5. Similarly

uQ(s), s) - w'(b)'2(s) < u(y(s), s) - w'(b)'X(s).

Now let

I
-
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f [uQ) - M

V
1 2 =[w'(b) -^'(b)].a

1 [W^'(b) -w'(b)].I

1 3 [w"(c) -w'(b)].Z

3 o

INote that
I3 , = j - 12I Then we have

(40.11) A k = w(b) -w 0(b)0 (*-(b) - 0(b0))

u fuQ) + 0 1(b) - + (w I(c) -w,(b
V0-s [tiQ)- - '(b).Z +w'(b).a] l~ a .~()*

< f' uQ) +- w '(b) -A + I3

- U(y - W41(b).Z + WW(b).a] - '

1 12+13 3

where the inequality follows from (40.10). Similarly

(40.12)~A<li+
Ak 1 2 + 3 3 1 3+1+2
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The proof of Lemma 40.1 will be completed by estimat-

ing the quantities Ii, 1i0 and Ji' These quantities can

be made sufficiently small (in absolute value) to prove

(40.2) if the 6 appearing in the statement of the lemma

is appropriately chosen.

It will be useful to make the following definition: a

quantity is uniformly small when 6 is chosen sufficiently

small if for every el > O it is less than e1 in absolute

value, for appropriate choice of 6, uniformly in ti, So, and S

(i.e., uniformly in u, in the choice of the chain 0 c: Sc S2 c

and in the choice of a particular link in this chain).

Let a - ..a. By Lemma 37.8, there is an integrable

•, depending on u and e only, such that if 6 is sufficiently

small then Z(s) < ý(s)e for almost all s e S. Choose n

so that also a(s) < n(s). From this it follows that

(40.13) h fil _ S II h Ji jn
V V

Next, let D be the exceptional set in the definition

of 6-approximation, i.e., the set in which we do not nec-

essarily have HlUs - si5 < 6. Let L be an integrable real

function such that u(x, s) < i(s) + Ex for all s in I and

all x in n; such a • exists by Lemma 37.9. Then

4:

•nI
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(40.14) IIJ 1 v i uQ) - ^o +V

6S V< (l + V\D + V (• + .i +

V_--\D VnOD

S6J' (1 + rn) + jI (ý + 2nM) .[]" V VIID

Similarly,

(40.15) IJll 6f 6j' (1 + nZ) + f' (j + 2nj).4os ll -6V\D VnD

Next, we must estimate the terms that multiply a

and a in the expressions for 12' 12' 13,i 3' J1 and J2"

For this purpose note first that by (40.7), if S 1 > 0,
0

then

(40.16) 13 - (w'(c) - w'($ ))

(4:0.17) J2 (wo(8) - w'(j 2))'•;

0

and similarly if f ,te
(40.18)3= > 0, th

(40.18) I3 " (Wo' -wo )'"

So)

Ir

~1'
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Now

c-f ,zeS Z+(l-U)bo-Sz
S S S

"= (1 - e)(b° - S = -(1 - e)A.
S

0

Hence

lic- S zIl 1 ,611,
S

0

and similarly

a -f S u <1 I11P.
S

0

Combining this with (40.13) and with the fact that L(V) 6 8,,

we obtain that if 6 is chosen sufficiently small, then

(40.19) lic - 5 •jj and 1 - 1 are uniformly small.
S S

0 0

Furthermore, we have

SO SO SO
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I,2

Hence

11 - ' 1 1 Z11 + ilai + 11C - j 1 zl,S So o

and combining this with (40.13) and (40.19) we obtain as

above that if 6 is chosen sufficiently small, then

(40.20) 18- Z 1 is uniformly small.
So

We now make use of the assumption that fSa > ce.

If we recall that S 0 S kSIandthatb =' 5a, then
0

from (40.13) and p(V) < 6 it follows that when 6 is suf-

>1 and rS j1E ec hficiently small, 2S 2- -
o 0 1

vectors b, c, c, fS 0 and fS 0 are all in A(2E, a). So
o o

we may apply Propositions 38.7 and 38.14, and formulas

(40.16) through (40.20), and deduce that if 6 is chosen

sufficiently small, then the terms multiplying a and ,•

in the definitions of ^2 $ I2 V I3 J1 and J2 will be

uniformly small. Taking into account formulas (40.11)

through (40.15), we deduce that for any given El > 0, if

6 is chosen sufficiently small, then

(40.21) lAki < 6fr(1 + nil) + (C +2nn) +
V VflD V
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here 6, 1 and • depend on u, a, e, and E only, and not

on the choice of a or the Sk (providing, of course, that

u and the Sk satisfy the conditions of the lemma). Writing

Vk for V and recalling that Vk M V = S\So = Sk+l\Skp we

deduce that the Vk are mutually disjoint, and their union

is included in I; similarly, the Vk n D are mutually dis-

joint, and their union is included in D. Hence from (40.21)

we get

TMkil lAki < JA(l + n•) + f( + 2nTI) + l••.
D

Using the integrability of TI and £ and the fact that p(D) < 6,

we deduce that if 6 and e I are chosen small enough, then

This completes the proof of Lemma 40.1.

PROPOSITION 40.22. Let u e '41' and let

a be p-integrable. Then for each e > 0 there

is a 8 > 0 such that if tie 1I is a 6-approxi-

mation to u, and e, then V(S) < c, where

V^ is defined by (40.3).
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Proof. Clearly ui(O) - 0. By Proposition 37.13, u,

is continuous on n. Hence for 6 sufficiently small,

a 6e yields

(40.23) u1 (.ra) < I €.
S

On the other hand, if in Proposition 37.11 we substitute
1T e for e, then it follows that for 6 sufficiently small,

we have

U,u(Td) - A I•> < • •+ •-r>••i+ 1)- •
S S r S

Combining this with (40.23), we get

(S) t(r) ,,(fa) < ;5 + I C-..
SS S

This completes the proof of Lemma 40.22.

PROPOSITION 40.24. Let u e UI, let a

be p-integrable, and assume

(40.25) for all s e I, either a(s) > 0 or a(s) - 0.

Then for each e > 0 there is a 6 > 0 such that

if' e Ul is a 6-approximation to u. then



•1 -- "' II I < C

• "i-- "1'l8"-

where v and v are defined by (40.3)

Re'mark. Condition (40.25) says that for each' s, either
all coordinates ,of a,(s) are positive or all vanish. thins

condition is implied both by (31.4) and by n-= 1; we will.

use it to 3tate (and-proVe) below a common genieralization

of Theorem'.G and Proposition 33.2..

Proof. Let 61 correspond <to - in accordance with

Lemma 40.2-2. Choose y so that*" 0 < y < fal and, so that
.a y implies 1-a < 61 e; this is. ,possible because of

s S
25). ChooseIel > 0 so that fal y implies fa > ele;

this, again, is possible <because of (40.25). Let

e2 = min (l, .,' ),

and ;choose 62 to correspond to- 2 in accordance with Lemma

40.1. Let 6 = min (61,8 62).

*Let w = v - V,^. and let

0 S 0C S I q-... c Sic Sn+1

,be a chain. It is always possible to insert finitely

: * a1 -0, then from- (40.25,) if follows that a -0,
-and the whole problem- becomes, trivial.



many additional sets S 01 ... , - 9  l ...2....

Sml, Sm29 ... into the chain so that So c S01 C S11 C ... C

S 1 C S11 c S 1 2 c ... C ... C Sm C Sml c Sm2 C ... CS+ 1 and

the measure of the difference between two neighboring sets

is < 6; that is, if we relabel the new sequence U0 1 ... , U = I,

then p(Uk+l\Uk) < 6 for all k. Furthermore, by Lyapunov's

theorem in one dimension we may suppose w.l.o.g. that for

one of the Uk, say for Uq, we have ja y. Then

Uq
m p q-1 p
F lw(Sk+I) - w(Sk)I z 1 W(Uk+l) - W(Uk) E - + E~.

k0O k=0 k0O k~q

Lemma 40.1 and the fact that UA is a 6 -approximation--hence

a fortiori a 6
2 -approximation--to u yield

p 1

k=q

Furthermore, since U^ is a 6-approximation to u, it is a

fortiori a 61 -approximation. Hence by the monotonicity

of v and V^ and Lemma 40.24, we have

j. -_ _ _ _ _ _ __ _ _ _ _ _I
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q -1.
mr w(Uk+d - w(Uk)

q-1

v v

= E Iv(Uk+1) - v(Uk) - (Uk+1) -

k=O

q-1 q-1
E -v(Uk+l) - v(Uk)> + z (Uk+l) - >(Uk)I

k=0 k-0

q-1 q-1
= E (v(Uk+l) - V(Uk)) + E ("r(Uk+l) -(Uk))'

k=0 k-0

= V(Uq) +V(Uq) < l + 1e =

because a < 61e (note that u is a O-approximation, hence

q
trivially a J 1 -approximation, to itself).

We conclude that

m 1 1
-- k, E 0lw(Sk+I) W(Sk 01 < Ye + Ye =e€

k=O

and it follows that liV - I1 = 1i1WI < C. This completes

the proof of Proposition 40.24.

PROPOSITION 40.26. Theorem G holds if

(31.4) is replaced by (40.25).

Proof. Recall that H is the set of all superadditive

set-functions in pNA that are homogeneous of degree 1. By

Proposition 35.6, for every 6 there is a 6-approximation t

to u that is of finite type. If v^ corresponds to the given-)(((I

•')))p



a and to this U^ (in accordance with (40.3)), then by

Proposition 40.24, for given e we will have lljv - vil < e

when 6 is sufficiently small. But by Lemma 39.16, ^v e H;

thus v can be approximated in variation by members of H,

i.e., it is in the closure of H. But H is closed (Proposi-

tion 27.12), and so we have proved that v e H. Proposition

40.26 now follows from Theorem F.

Theorem G and Proposition 33.2 both follow immediately

from Proposition 40.26.

Ii

Ii

I2

- J _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___
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41. THE ASYMPTOTIC VALUE OF A MARKET

Throughout this section, pNAD will denote the closure

of pNA + DIAG• (see Section 19 for the definition of DIAG).

PROPOSITION 41.1. There is a value w on

pNAD that is continuous in the variation norm

and enjoys the diagonal property: furthermore,

there is only one such value. Finally,

pNAD c ASYMP,

and the value w coincides with the asymptotic

value on pNAD.

Proof. We have pNA c ASYMP (proposition 18.6), DIAG c

ASYMP (Proposition 19.7), and ASYMP is a closed linear sub-

space of BV (Proposition 18.4). Hence pNAD = pNA + DIAG c

ASYMP, and a fortiori pNAD c ASYMP.

It remains to prove that there is at most one value

on pNAD that is continuous and enjoys the diagonal property.

Indeed, if w is a value on pNAD with these properties, then

T is determined on pNA by the uniqueness of the value on

pNA (Proposition 7.11), and on DIAG it must vanish identically

by the diagonal property (Section 19). Hence it is deter-

mined on pNA + DIAG, and so by continuity on its closure,

namely on-pNAD. This completes the proof of Proposition

41.1.



153-

Convention. For the remainder of this section, co

will denote the unique value on pNAD provided by Proposi-

tion 41.1.

We are now ready to state the main result of this

section, which, together with Proposition 41.1, immedi-

ately implies Proposition 31.7.

PROPOSITION 41.2. Let a be p-integrable,

let u C U,. and let v be given by (30.1). Then

v is well-defined and is in pNAD, and the core

of v consists of the single point cpv.

The proof of Proposition 41.2 will proceed in two

stages. First we shall prove a generalization of Theorem

F (Proposition 41.28). In this generalization the hypoth-

esis v e pNA is replaced by*

(41.3) v e pNAD n pNA'.

Since v e pNA', the extension v* is defined,** and hence

the homogeneity condition in Theorem F makes sense. In

the conclusion, we are no longer justified in speaking

of "the" value; however, the conclusion remains true if

one refers to the unique value cp on pNAD provided by Prop-

osition 41.1.

*Recall that pNA' is the closure of pNA in the supre-
mum norm; see Section 22.

**See Proposition 22.10.
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In the second stage of the proof, we shall prove that

the v of Proposition 41.2 satisfies (41.3), and that it

is also superadditive and homogeneous of degree 1. The

proof of Proposition 41.2--and hence of Proposition 31.7--

is then easily completed.

In the next few lemmas we shall make free use of the

notations and terminology of Part III, in particular of

Sections 22 and 23. We begin with a generalization of

Lemma 22.1.

LEMMA 41.4. Let g be a finite-dimensional

vector of measures in NA. Let gl, ... , gm be

ideal set functions with

91 ;5 ... ;5 gm.

Then there are sets T1 , ... * Tm in C, with

T1 c ... c Tm I
such that for all i,

9(Ti) f fgidd.

Proof. The proof is exactly analogous to that of

Lemma 226.1.

i

-.-5 I
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LEMMA 41.5. Let v c BV n pNA'. Then

v*e IBV, and Ilv*II - IlvIl.

Remark. When we write 11 11 we are, of course, referr-

ing to the variation norm. The supremum norm is denoted

by II 11', and the equation 11v*1i' - Ilvll' has already been

established (see (22.8)).

Proof. Let 0 be a chain

0 =-go gl0 "" 91 gm ;S m+l =- XI

of ideal set functions. For a given e, let 91, .'.. Cm

be vectors of measures in NA, and 61, ... , %m positive

numbers, such that for all i,

tI.r(f - gi)dgijt g 6 i so tv*(f) - v*(gi) I < e;

the existence of such 9 and 6 1 follows from the continuity

of v* in the NA-topology (see (22.6)). Let 9 be the vector

(Ci, ... , 9m), and define TI, .0.. Tm in accordance with

Lemma 41.5. Then N(xTi - gi)dg - 0 for all is and hence

(XTi - gi)d~i - 0 ý 6, for all i. Hence

Iv(Ti) - v*(g1)I 1 Iv*(XT ) - v*(gi)l < e.

Setting T0  0 0 and Tm+1  I, we deduce

:1



-156-

IIv*II - Er= Iv*(gi+I) - v*(gi)I

< E i_ v(Ti+I) - v(Ti)I + 2(m + l)e =< Ilvil + 2 (m + 1)e.1=0.

Letting e - 0, we deduce 1Iv*011, < jvlj, and hence

I1v*II = sup0 I0v*I' :_ IlvIl.

Since the inequality lvil _< 11v*01 is obvious, the proof of

Lemma 41.5 is complete.

LEMMA 41.6. Let TI, ... 2 Tm be disjoint

measurable subsets of (0, 1). With each t in

each Ti, let there be associated a family Vt

of closed intervals* in (0, 1), one of whose

endpoints is t; assume moreover, that each Wt

contains arbitrarily short intervals. Let

V = U WT and ( = UTii AJ. teT~ i-S1l i,

Then for each e > 0, there is a finite family

8 of mutually disjoint intervals in V, such

that if Si is the union of the intervals in

$ n w'i then

*All intervals in this lemma and its proof are under-
stood to have positive length.

____ ___ ___ ___ ___ ___ ___ ____ ___ ___ _I;
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x(Si + Ti) < ,

where X, is Lebesgue measure and "+" denotes the

symmetric difference.

Proof. Let us call Ti pure left if for each t in Ti,

Wt contains arbitrarily short intervals whose left end-

point is t. Define pure right analogously, and call Ti

pure if it is either pure left or pure right (or both).

First we prove the lemma in the case in which each" i

is pure, proceeding by induction on m. The case in which

m = 1 and Ti is pure left is proved in [T, §11.41, Lemmas

I and 2, pp. 356-357]; the pure right case, of course, fol-

lows from the pure left case by symmetry arguments.

Now assume that the lemma has been proved for m - 1;

and let T., . Tm, and the sets Vt Vi and V satisfy the

hypotheses of the lemma. Let •, = Vi U ... U V Apply-

ing the induction hypothesis (for e/m instead of e), we

obtain a family , -of mutually disjoint intervals in V,

such that for i = 1, ... , m - 1, if Si is the union of

the intervals in 8, n wi, then

(41.7) X(Si + Ti) < C/em.

Let T* = TI U ... U Tmnl, and S, = SI U U SiMnl* Note

that
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S* + T.C (T 1 + S1 ) U ... U (T+.I + )

and hence

X (S.+ T,) g mc < €
m

Next, since Tm is pure, we may assume w.l.o.g. that it

is pure left. Let T** - Tm/S*, and for t e T**, let ,4,
tbe the set of all intervals in )V, whose left-hand end-

point is t and which do not intersect S*. Vt is nonempty

and contains arbitrarily small intervals, because S, is

closed and Wt contains arbitrarily small intervals whose

left-hand end point is t. Let V** - UtCT %A(;*. Apply

the case m - 1 (with e/m instead of e) to T** and A(**,

obtaining a finite family Sm of disjoint intervals in

hV** such that

Xm(SM + T**) < C/m,

where Sm is the union of the intervals in Sm. Let

=* U 9m Since S, n Sm 0 0, the members of 5 are

disjoint. Furthermore, it may be verified that

Sm+ m (Sm + T**) U (S*\T*);

hence
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x(Sm + Tm) < X(Sm(S, + T) < + m- e em m€ + x S*.

This, together with (41.7), completes the proof of the

lemia in the case in which all the Ti are pure.

In the general case, let 4', for each i, be the set

of all t in Ti for which At contains arbitrarily small

intervals whose left-hand end-point is t; let TR = Ti\T L

Let AL U Wt and (R W U tT t" Then TLis pure
i i

left and TR is pure right, so we may apply the case justi
proved to the system consisting of ,.. TL LTR .***,

and the V If we use e instead of e, this yields a

finite family 9 of mutually disjoint intervals in W, such

that if SL and SR is the union of the intervals in a n /iL

and s n fi respectively, then

X(SL +TL) 1 and X(S + T) <

Since

S+ TiC (SL + Tt) U (S R + ý).

it follows that

and the proof of the lemma is complete.
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LEMMA 41.8. Let f be a nonnegative ex-

tended real-valued* function on (0, 1). For

each positive integer k .and each i with 0 <

i < k 2 , define

(ft : i/k < f(t) < (i + 1)/k) for i < k

Tik
A 

2.- ~I k

ft : k < f(t)) for i k .

Then

21

k2 k x(Tik) 0. f(t)dt3i=O -I

as k --

Proof. This follows easily from any of the standard

definitions of the Lebesgue integral.

Let v* e IBV. For each 6 > 0, define the 6-norm

IIv*116  to be

sup .Z=0 Iv*(gi+l) - v*(gi)

where -the sup is over all chains

S*I.e., f may take the value 4w as well as finite non-.
negative values.
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0 go -<- gl <g ""5 gm - ml=x

such that for all gi and all s, s' e I, we have

(41.9) Igi(s) - gi(s' < 6.

The restriction (41.9) means that the gi are "close" to

the diagonal; indeed, if gi(s) = g1 (s') for all s, s' in

I, then gi is of the form tXl, and so is on the diagonal.

Thus Ijv*jI'6 is the sup of the variation of v* over chains
which always remain in a 6-neighborhood of the diagonal.

Note that jjv*116 <= 11v*11; and so if v e BV fl pNA', then by

Lemma 41.5, it follows that

(41.10) IIV*II6 8 Ivi.

The next lemma generalizes the hypothesis as well

as sharpens the conclusion of Lemma 23.1.

LEMMA 41.11. Let v e BV nl pNA', and let

S e 0. Then Iv*(t)I+ is integrable over [0,1],f and for all 8 > 0,

f av*(t)I+dt < I1v*U16 .

Proof. Fix 6 > 0. Let k be a positive integer.

Definea partition (T0 , TI, ... , T 2} of (0, 1) by
k

I
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(t : i/k 5 16v*(t)l+ < (i + 1)/k) for i < 2

(t : k 5 Ibv*(t)I+) for i -k 2

For each t e (0,1) there are numbers T, arbitrarily small

in absolute value, such that

T 0, 1b-I < 6, It + TI C (0,1), and
(41.13)

(4 ) v*(t)+ - Iv*(tXI + TXS) - v*(tX1 )I < 1

With each t and T satisfying (41.13), associate the inter-
val whose endpoints are t and t + T; let V4t be the family

of intervals so defined, Now apply Lemma 41.6 to the sys-

tem defined by [To, T1 , ... , T 21, and the families V

k
This yields a family $ of intervals satisfying the con-
clusions of that lemma (for given e). Denote the intervals

of 8 by UI, ... , Up. where for all h, the right end-point

of Uh is left of the left end-point of Uh+l; this is pos- j
sible because the Uh are disjoint. Each Uh has end-points

t and t + i satisfying (41.13); denote them by th and th + rh
respectively. Now construct a chain n of ideal sets

0- go g g9 1 i "'" 9 2p+l =X

by letting _



-163-

g2h-1 ' thXI and g2h thXI + •hXS),

if ¶ > 0, and

g2h-i = thXI + r"hXS and g2h - thXI

if T < 0. Note that since I~hl < 6 for all h, the chain

n satisfies the condition (41.9), and hence I1v*U6 8 1Iv*11.

To evaluate 11v*11., for each i relabel the intervals con-

stituting aS n Ai by Uil, ill , Uiq (where q depends on i);

these are some of the Uh, and when i varies, we get all

of the Uh. If Uij Uh, let tij - th and rij = T h Then

tij e Ti, and so by Lemma 41.6 and Formula (41.12), we

have

I1v*11 _ IIv*110 >= t v*(thXI + ¶hXS) - v*(thXI) l

=P i =_1 v*(thxI + ThXS) - v*(thxI)(

"E v*(tiixI + TiJXS) - v*(tijiX)Ix(U)

Ej~j i X (U1) 1 i

- S in Lsm- 41 .6 Fom Lm 41.,

wher Si- Ujij s asin emm 41.. Fom Lmma41.
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we obtain

X(Si + Ti) <C;

combining this with the previous inequality, we obtain

llv*l16 Z: Ei i X(Ti) - eEi = i X(T)

Iiv _ 7 k k'1

Letting e - 0, we deduce

UIv*ll F i _ i x(Ti) -

But as k- •, we have by Lemma 41.8 that*

zi X(T) -1 lav*(t)f+dt.

Since 0 ask- k , we deduce

Ilvll >-5i f0 1 v* (t)[I+dt.

This completes the proof of Lemma 41.11.

LENTA 41.14. Let w + r e BV n pNA', where

w e DIAG. Then for 6 > 0 sufficiently small,

*The Ti depend on k as well as on i.
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U(w + r)*ll lirll,

Proof. Since w is in DIAG, it satisfies (19.1). Let

k, r, and U correspond to w in accordance with (19.1).

Let 6 be such that

(41.15) (St)(l1C(S) - tell < 6) = c(S) e U;

this is true for all sufficiently small 6. Let v - ,w + r.

For given e > 0, let 0 be a chain

0= go '9 gz1 •9 !9 gm- gm=l = XI

of ideal set functions satisfying (41.9), such that

(41.16) llv*ll > llv*l1 - c.

Since v e pNA', we may find a polynomial in measures fov,

where v is a vector of measures in NA+, such that

(41.17) liv - fovil' < e/4m;

from this and (22.8) it follows that l1(v - fov)*lI' < e/4m,

and hence

(41.18) 1l(v - fov)*ll < 2(m + l)e/4m -g e.
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Now apply Lemma 41.4 to the vector measure v = (•, v),

obtaining a chain r of sets

0 = TO TI C... CT Tm C T+1= I

in C, such that for all i,

t (Ti) r .'gidg.

It follows that for all i, v(Ti) = rgidv, and so

(fov)*(gi) = f(.rgidv) - (fov)(Ti);

hence

(41.19) II(fov)*11 = I=fovl .

Next, for each i, since gi satisfies (41.9), there is a

number ti such that

1gi - tix 1f < 6.

Hence for each component Cp of C,

IC (Ti)-tfl = IfgidCp-t I - If(gj-tiXI)dCpIt f gig-ti 1xldCp < 6.
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Therefore IIc(Ti) - tiell < 6, and so by (41.15), C(Ti) c U;

hence w(Ti) - 0, and so

(41.20) IlwlIr - 0.

Note also that by (41.17),

(41.21) 1iv - fovIlr < 2(m + 1)e/4m S e.

Combining (41.16), (41.18), (41.19), (41.20), and (41.21),

we get

11v*11i I_ e + 11v*ll0 £_ e + ti(v-f°v)*lhj + 11(fov)*ll1 g 2e + Ilfo0vllr

_ 2e + Ilfov-vllr + IIv-wllr + Iliwlir I 3U + tlrlir + 0 4 3e + Ilril.

Letting e - 0, we obtain the desired result. This completes

the proof of Lemma 41.14.

The following proposition is an analogue of Theorem E.

PROPOSITION 41.22. Let v e pNAD n pNA'.

Then for each S e 0, the derivative av*(t, S)

exists for almost all t in [0,1], and is inte-

grable over [0,1] as a function of t; and

(Cpv)(S) = 0lav*(t, S)dt.
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Proof. The proof follows the ideas of the proof of

Theorem E (Section 23). Define

A (t) r lin sup v*(tX. +rXS).V*(tX.) - lim inf v*(tXI+ rX5)-v*(tx 1)

(cf. (23.5)), and

a, = fl1y (t)dt.

From Lemma 41.9, we then obtain

0 • A, _ 21flav*(t)I+dt _2v11v ,

for all 6 > 0 (cf. (23.6)); furthermore

whenever v, w e BV n pNA'. Now let v e pNAD fl pNA'; for
given e > 0. let v =f q + w + r. where q € pNA, w e D!AG, 2!

and jlrli < e. From Theorem E it follows that &q = 0; hence

since w + r = v - q e BV n pNA', we get, using Lemma 41.14,

that for 6 sufficiently small,

0 g AV A q + Aw+r g 0 + 211 (w + r)*l6 • lrl < e.

Letting e - 0, we deduce AV = 0. Hence &v(t) = 0 for almost

/I
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all t, i.e., bv*(t) exists a.e. for all v. Whenever it

exists we have Iv*(t)I - lav*(t) +, and hence by Lemmas

41.11 and 41.5, we have, for all 6 > 0,

(41.23) lI av*(t) Idt g IIv*116 _ IIv*1 = -Ilvll;

in particular, this implies the integrability of av*(t).

Now let

ev = fllv*(t)dt;
0!

then ev is linear in v, and by (41.23),

(41.24) t8v _ IIV*116 < Ilvil

for all 6 > 0. For given e > 0, let v - q + w + r, where

q e pNA, w e DIAG, and liril < e. By Theorem E, vq = eq;

therefore by (41.24) and Lemma 41.14,

I(epv)(S) - OV<:_ !-(cq)(S) - eqI + IJcP(w+r)(S) - e(w+r)l

(41.25) _ 0 + JcP(w+r)(S)t + le(w+r)l g •c(w+r)(S)l + II(w+r)*ii6

I Icp(w+r) (S)I + 11rul < Ico(w+r) (S) I + e.

Now v coincides with the asymptotic value on pNAD (Proposi-

tion (41.1), furthermore, since w and w + r are both in
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pNAD, so is r (though it may not be in pNA'). Since 11011 1 1
for the asymptotic value (Proposition 18.1), it follows that

(41.26) lcrlI g liril < e.

On the other hand, w e DIAG and € has the diagonal property

(Proposition 19.7); hence ow = 0. Combining this with

(41.25) and (41.26), we obtain

I ov(S) - ev_ I Igc(w + r)ll + e -< IowlIl + Iloril + e ,- 2c;

hence letting e - 0, we deduce wv(S) = ev, as was to be

proved. This completes the proof of Proposition 41.22.

The following is an analogue of Proposition 27.8.

PROPOSITION 41.27. If* w e pNA', then

every member of the core of w is in NA.

Proof. The proof follows the ideas of that of Prop-

osition 27.8. What is needed is the e.ndstence of an NA+

measure v such that if TI, T2 , ... is a sequence of sets

in , with v(Ti) - 0, then (27.10) holds, i.e.,

w(Ti) - 0 and w(I\Ti) - w(I);

*The same conclusion holds when w e pNAD.

I

I

I?
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this may be called* the continuity of w w.r.t. v at 0 and I.

To establish this, let wl, w2 , ... be a sequence in pNA

such that

11w - wiI' - 0.

Let v. be probability measures in NA such that w. < v<

for all j. Set v - ZI vj/2J. If v(Ti) - 0, then vj(Ti) - 0

for all j, and hence asai w \-,

wj(Ti) - 0 and wj (l\i) j(

For given e > 0, pick j such that 11w - wjiI' < e/ 2 , and

let N be such that whenever i > N,

1wj(T) I < e/2 and lwj(I\Ti) - wj(I)l < e/2.

Then whenever i > N,

jw(Ti)I < e and lw(I\Ti) - w(I) < e,

*It is clear how this defip-tion may be generalized
to cover continuity of w w.r.t. v at an arbitrary S. Com-
pare the discussion of Example 33.11, where continuity of
a set function at S is defined Wvthout referring to v.
It may be seen that continuity at S 12s implied by continuity

at S w.r.t. some v in NA+; and this, in turn, is implied
by absolute continuity.
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i.e., (27.10) holds. Thus the desired continuity property

is established. The remainder of the proof is exactly as

in Proposition 27.8.

The following proposition is an analogue of Theorem F.

PROPOSITION 41.28. Let v be a superaddi-

tive set functioi. in pNAD n PNN' that is homo-

geneous of degree 1. Then there is a unique

point in the core of v, namely wv.

Proof. The proof follows the lines of the proof of

Theorem F rather closely. Results analogous to Lemmas

27.2, 27.4, 27.5, and Corollary 27.,3j are readily established,

the only difference in the proofs being that references to

Theorem E must be replaced by references to Proposition

41.22. Thus it is established that Vv is in the core of v,

and that it is the only member of the core of v that is

in NA. But by Proposition 41.27, there are no other members

of the core of NA, and so the proof of Proposition 41.28

is complete.

With this, the first stage in the proof of Proposition

41.2 is complete. To finish the proof of Proposition 41.2,

we must show that the v of that proposition is well-defined,

that it is in pNAD f pNA', and that it is superadditive and

homogeneous of degree 1.

Let & be any subset of the a-field C ,of coalitions,

such that .01 and, I are in &. It is not required that •
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be a a-field. A real-valued function w on . with-w(0) =-0

is, called a .&-function. Monotonicity, bounded vatidt-ion,

and the variation norm are defined for &--functions just as

they are for set-functions. Thus a .6-function w is mono-

tonic if S1 r S2 e .& imply w(Sl) ; w(S 2 ); w is -of toundcd

variation if it is 'the difference of monotonic functions;'

and in that case, its (variation) norm liwit is defined by

(41.29) lwl = inf (wl(I) +

where the inf is taken over all monotonic &-functions wI
and w2 such that w = w, - w2 .

.,LEMMA 41.30. If w is a ,0-function of

bounded variation, then

liwll - sup Ekl ' w(S'

where the sup is taken over all chains-

• 0c: ... c: Sk=

of Sn .&. Furthermore, the inf in the

definition (41.29) of Itwil is attained.

Proof. The proof is similar to that of Proposition

4.1.
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LEMMA 41.31. Let w be a &-function of

bounded variation. Then there exists a set

function v in BV such that vI.& w and

Proof. First let w be monothnic. Define v by

v(S) = sup- (w(T) : T e & and Tc SC .

Clearly v is monotonic, and v.(I) =w(l). This compl.tes

the proof in case w is monotonic.

In the general case, using Lemma 41.30, let w and

w2 be monotonic h-functions •such that

w -w1 -"72

and- w1 (I) + w2 (I) = liwli. Let v, and v 2 be monotonic set

functions such that VlI& - W., v2 1.& - w2 , and vl(I) - wr(I),

v2(1)= w2(l). Define v = v1 - v 2 . Then

I lvil S IIvlII + 11v211 = Wl(i) + w2(I) -IwIl.I

But again from Lemma -41.30 it is clear that liv!! hll,

since v is an extcnsion of w. This completes the proof of

Lemma 41.31.
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Throughout the remainder of this section, a will be

a fixed p-integrable function from I to nl, u will be a

fixed member of ,i and v will be the set-function cor-

responding to a and u (i.e., v(S) = US(fa)); that it is
S,

well-defined follows from Proposition 36.1. We will use

,the notation U^ for 6-approximations to u (though u is not

fixed throughout the discussion), and for given U^, we will

denote by v^ the set function corresponding to a and ti

(i.e.., A(S) = ^iS(fa)). Finally, c will continue to denote
S

the unique value on,,pNAD given by-Proposition 41.1.

LEMMA 41.32.. 'For each 6 > 0, define

Then for every e > 0 there is a 6 > 0 such

that if tx e -V,-is a 6-approximation to u, then

IIVI.0 - V].&6I <e.

Proof. The proof is similar to that of Proposition

40.24, the restriction to '6 taking the place of condition

(40.25), W.l.o.g.* let fa = e. Let 61 correspond to C

in accordance with Lemma 40.22; w.l.o.g. let 61 < 1. Let

*Aiy commodity j for which J i 0 may simply be ex-
cluded from consideration.
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e2 = r (ai 61, ),

and choose 62 to correspond to e2 in accordance with Lemma
140.1. Let 6 f min (4 61, 62).

Let w = v - V, and let

0= .Sc Sc .. c.S C S
0 1m M+l

be a chain in .& By Lyapunov's theorem in n dimensions-,

it is always possible to insert finitely many additional

sets

SOls S02 -7 S2ll• S12 ".... '..' sSml Sm2' ...

in into the chain so that

so C SQ1 C S. C...C S.. C S 11 C SC2 SII- Sm S SmS

! S m2 C...C S C +1

and the measure of the •difference between two neighboring

sets is*< 6; that is, if we relabel 'the new sequence

U0, ... , Up+l fI thenip(-Uk+l\Uk) < 8 for -al k. Further-

,more, by Lyapunov's theorem (in n ,dimensions) we may suppose

w.1.o.g. -that for one of the Uk, say for U4, we have*

-T one-dimensional Lyapunov theorem is -not suffi-
cienL because we must make sure that U C•. &'

q
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a' q = 681 From Uq &6 it follows that for all j,

a1I < 26 61,
q q

and hence

(41.33) aJ 1 :1i 3 6 1

q

and

(41.34) a3 > 6 1 1

-~~~~~ U '.L -2q

Now

k-o I-(sk+i.) - w(Sk)?_ F.:=olw('Uk+l) - w(Uk)t i + k=q*

From (41.34), Lemma 40.1, and the fact that ^- is. a 6-

approximation--hence a fortiori a 6
2 -approximation--to u,

we then -obtain

aE-

ki-q 2 C.

Furthermore, since u is a 6 -approximation to u, it is a
-fortiori a, 6

1-approximation. Hence by the monotonicity

" of v and ^V and by (41.33) and Lemma 40.24, we have, exactly

as in the proof Of Pfoposition 40.24, that

J.
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k-O V(U ) + V(U < 1C + 1

kq2

We conclude that

•m 1wSkl 1 cEk=O "wSkl W(Sk) 1 <,

and it follows that

IIvIv6 - •J.&1I -lwI.61I < C.

This completes the proof of Lemna 41.32.

COROLLARY 41.35. v e pNAD.

Proof. Let e be given, and let 6 and u^ correspond

to e in accordance with Lemma 41.32. By Lemma 41.31,

there then-exists 'a set-function r in BV such that

rI•.& (v -)lh, and

lrli = I1 (v - f) < C.

Then

v - r = (v - - r) +'.

Now (v - - r) 1.6 & 0, and hence v, - - r' e DIAG; and,

by Lemma 39.16, •V e pNA. Thus
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v - r 6 pNA + DIAG.

Since lent < e and e was chosen arbitrarily small, it fol-

lows that v is in the closure of pNA + DIAG. This com-

pletes the proof of Corollary 41.35.

Let H' be the set Of all superadditive set functions

in pNA' that arie homcgeneous of degree 1.

PROPOSITION 41.36. H' is closed in,'the

supremu-m norm.

Proof. The proof is exactly analogous to that of

Proposition 27.12.

PROPOSITION 41.37. v e H'.

Proof. Let e > 0 be given, let 6 correspond to

f/(l + E fa) in accordance with 'Proposition 37.11, and

let t e U( be a 8-approximation to u. Then for all S e C,

wt have

-Iv(s) - ) us , S) -" a)I <• - + 4s

Hence

l1v ,- ",11' = supslv(S) - ,(S)-I < e.

Since an appropriate ti can be found (Proposition 35.6)
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and since 4 e H (Lemma 39.16), it follows that v is in

the closure of H in the supremum norm. But this is cer-

tainly included in the sup-closure of H', and so by Prop-

osition 41.36 in H'. The proof of Proposition 41.37 is

complete.

Proposition 41.2 follows immediately from Proposi-

tions 41.28, 41.35, and 41.37; Proposition 31.7 follows

immediately from Propositions 41.1 and 41.2.

1'

... I I
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42. POSSIBILITIES FOR EXTENSIONS OF THE MAIN RESULTS

A. The Mixing Value

In Section 31 the question was raised as to whether

Proposition 31.7 can be proved when the mixing value is

substituted for the asymptotic value. Here we will show

that this is indeed the case if it can be shown that v

(as defined in (30.1)) is in AC. Of course, if v 4 AC,

then v d MIX, so that there is then no hope for proving

the analogue of Proposition 31.7. We do not know whether

or not v e AC.

PROPOSITION 42.1. pNAD n AC c MIX.

Proof. The proof is patterned after that of Proposi-

tion 19.3 (which states, among other things, that DIAG n

AC c MIX). Let v e pNAD n AC. Let (eV, £2, ... )' be a

sequence tending ,t: 0; then for each j we may find a decom-

position of v (depending on

v = vI + v 2 + v3,

where v, e pNA, v 2 e DIAG, and 11v3 11 _ý . Since v, c pNA c

MIX (Proposition 16.9), there is a probability measure

PVl corresponding to v, in accordance with Proposition 14.1.

For each j, let k, C, and U (which, of course, depend on j)

correspond to v2 in accordance with (19.1), and let

I7
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Vi= IF Ei-1

Let

Let p be a probability measure in NA such that pv << P3

let (01, @-2 ... ) be a p-mixing sequence, and let if be a

measurable order. Now fix j for the time being; note that

1Vi << p and that qi << p for all i. Proceeding exactly

as in the proof of Proposition 19.3, we conclude that there

is a positive integer m0 such that

C(I(s; OmO)) e U

for all s e I and m > m0 . It follows that for all such s

and m, we have

(42.2) v 2 (I(s; @,R)) = 0.

For fixed m > m0 , let a = am'MR and let W be in the

field (not a-field) H(.2) generated by the initial segments
I(s; .) (cf. the proof of Proposition 12.7). Then W can

be written in the form

w U= [ 1 lti, s)

4
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i.e., as a finite union of disjoint .- intervals, where

(42.3) s ptp • I.s. sI.I

Since v 2 + v 3  v v - Ve e AC, it follows ,that T(v 2 + v 3 ; .)

exists (Proposition 12.7), and so by (12.2) and 42.2),

10[(v2 + v3; -2)(W)l = z,@(v2 + v3; ')(UP,=l, Iti, si)I)!

--IE£=I [ýP(v2 + v3; )(Il(si; e) z ¢(v2 + v3; 2) (1l(tiý; .7011

3I.P=.1 (v2 + v 3 )(I(si - 3)(l(ti; a))]'

•I -- I12p=1I [,-"3(I(si; ))"v3(i'(ti; &)•'

By (42.3), the last expression is the variation of v3 over

a subchain of a cer-tain chain, and so it is < 11v3 11 < ej

Thus we have

cP, (v2 v- 3 ; @mp) (W)'I :5 e-j _

whenever W e H(em?).; but since the field H(emk) generates

the a-field C .(by (12.3)-), it follows from a= standard ap-

proximation argument* that

*One uses [H11, p. 56, Theorem D. Compare the end
of the proof of Theorem,12.7.

47

-I*



'CI(v2 + v3 ; Omi9)(S) ei

for all'S e C,; of course this holds for all m > mo. From

this, v1 e MIX (Proposition 16.9), and Proposition 14.1.

it follows that for all S e C,,

lim supraW t (v; em) (S)

"m lim (vl; em?)(S) + lim sup C(v2 +v3; e,9?)(S)

= (C•vl)(S) + c.,

where v is the mixing value (or, for that matter, the

unique value on pNA). Similarly

Sn~~lm infm-= =(;%' (s1 (l) (S) - ej.

Hence

tim sup 9p(V; oeil) (S) - 1ira inf &(v; 8i) (S) • 2c.. -

Now the left side of this inequality is independent of j;

so we may let j ., and conclude that lhmy, 0(v;, Gm?)(S)

exists. By Proposition 14.1, this completes the proof of

Lexna 42. 1.
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PROPOSITION 42.4. There is exactly one

value on pNAD n AC that is continuous in the

variation norm and enjoys the diagonal prop-

erty. This value coincides with the mixing

value on pNAD n AC, as well as with the value

m of Proposition 41.1

Proof. Since we have shown that pNAD n AC c MIX, it

is only necessary to establish the uniqueness in the first

sentence of the-proposition. Now

pNAD n AC = (pNA + DIAG) n W = (pNA + DIAG) n AC

- pNA + (DIAG-'?FnC,

since pNA c AC. The proof of uniqueness is now completed

just as in Proposition 41.1, except that DIAG n AC must be

substituted for DIAG. This completes the proof of Prop-

osition 42.4.

Suppose now that the hypotheses of Proposition 31.7

are satisfied, and suppose further that v e AC. Then by

Proposition 41.2, v is well-defined, v e pNAD n AC, and

the core of v consists of the single point-cpv, where P

is the value of Proposition 41.1. But by Proposition 42.4,

mv coincides with the mixing value of v as well. Thus we

have shown that if v e AC, then the mixing value -of v

exists and is the unique point in the core of v.



B. Positivity of Initial Resources

Propositions 31.5, 31.7, 33.2, and 40.26 give condi-

tions under which the positivity condition (condition

(31.4)) can be dispensed with. It is, however, possible

that it can be dispensed with altogether; i.e., that The-

orem G remains true if this condition is simply dropped,

without substituting anything for it. We have not been

able either to prove or disprove this possibility.

C. Strict Monotonicty of u

Our proofs make extensive use, especially in Section

37, of the assumption that each of the u(x, s) be strictly

increasing in x. It is, however, possible that a careful

treatment might be able to dispense with this assumption,

particularly under certain conditions (such as (31.4)).

Compare Proposition 2.2 of [A-P], which would also be con-

siderably easier to prove if one would assume that the u-

functions are strictly increasing in x.

•D. Attainment of the Max in the Definition of v

This question was treated via a number of examples

in Subsection D of Section 33, where we showed that it

is hopeless to try to extend our results to the case in

which the max is not attained, at least in v(I),. The

question arises, though, whether it is necessary to assume

the asymptotic condition (31.2), or whether it would not

:be enough simply to assune that

• d -
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(42.5) v(I) is attained

or

(42.6) all the v(S) are attained

or something of that nature.

Aesthetically, an "explicit" condition like (31.2)

is preferable to a condition like (42.5), since given a

specific family of u-functions, it may be difficult to 0

tell whether (42.5) holds. The mathematical question of

whether (31.2) can be replaced by (42.5) still remains,

though.

Our method of proof is based on approximations by

u's of finite type, this is based .on the norm on Ol defined

in Section 35, and this in turn .depend, essentially on

(31.2). Thus (31.2) is, used not only to establish, that

the v-(S) are attained, but also directly in the proof.

It appears that if one wishes to substitute (42.5) or

(42.6), one would need an entirely new line- of prcof. We

do not, of course,, have a counterexample;

The most natural candidate for a replacement for

(31.2) would seem to be neither (42.5) nor (42.6), but

krather the stronger

(42.7) uS(a) is attained for all S e C and all a £ f.

1' .
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Condition (42.7) is equivalent to the condition that for

anyS c a,, the integral of the subgraphs* of u(., s) over

s e S be closed. Our problem is unsolved when any one of

(42.5), (42.6'), or (42-.7) is substituted for (31.2).

In the extremely special case in which u is of finite

type and all the u(', s) are concave, the methods of Sec-

St ion 39 can ptobably be pushed through; that is to say,

though •we have not checked the details, we believe that

in this case Theorem G can be proved without .assumptions

(31.2) and (31.4). In any event, (42.7) holds in this case,

because the subgraph of the function us is a finite sum of

closed subgraphs.; .this must be closed, since all the 3ub-

graphs are in "the nonnegative orthant.**

E. Dispensing with AssumptionR (2.1)

Assumption •(2.1), according to which (I, C) is iso-

morphic to the unit interval with the Borel a-field, is

needed in this part only because without it there may be

more than one value on pNA. Thus Proposition 31.7 remains

true as it stands even without (2.1), and Theorem G and

Proposition 31.5 remain true if "the value epv" appearing

*The subgraph of a nonnegative function f is here de-
fined to be t(x, y) : 0 < y • f(x)]. In Section 37 we
used the same term for tie set f (x, y) : y g f(x)]; usually
it doesn't make much difference which way one defines this
term, but here the condition y ;_ 0 is convenient, as we
shall see below.

**This is the reason for defining the subgraph by
0 ! y ý_ f(x) rather than just by y !g f(x).
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at the end of the statement of Theorem G is interpreted

to, be that* value for which p(p4 k) - pi for all NA probability

measures p and all k.

The theorems of [A-P] that we have quoted'here depend

on the theory of integrals of set-valued functions-- IA7] ,

this in turn depends on a selection theorem of von Neumann

[VN, p. 448, Lemma 51, and this in turn depends on (2.1).

But von Neumann's theorem can be generalized [A6] so as

not to depend on (2.1), so for the purpose of applying,

the results of [A-P]J, (2.1) is not needed.

*It can be seen by the methods of Part I that there,
is a unique such value, and that it obeys the integral
formula (3.1).
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